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The dynamics of a community com- 
prising populations of various interact- 
ing species may, in general, be modeled 
by a nonlinear set of differential equa- 
tions. Consequently, the equilibrium or 
steady-state system need not neces- 
sarily be a set of constant time-inde- 
pendent populations (that is, a point 
equilibrium such as the equilibrium of 
a marble in the bottom of a cup) as 
it must be for a linear system, but can 
alternatively be a stable limit cycle 
wherein the population numbers under- 
go well-defined cyclic changes in time. 
The amplitude of such a limit cycle, 
that is, the maximum and minimum 
values the individual populations reach 
during the cycle, is fixed solely by the 
intrinsic parameters of the model such 
as birth rates, predation rates, and so 
on. For a stable limit cycle, just as for 
a stable point equilibrium, the system, 
if disturbed, will tend to return to the 
equilibrium configuration. This is il- 
lustrated in Fig. 1. 

In this report I consider the wide 
class of models which have been pro- 
posed in the ecological literature for 
predator-prey systems. These models, 
the mathematical structures of which 
have increasingly been guided by field 
and laboratory observations, incorpo- 
rate a variety of forms for the stabilizing 
density-dependent or resource-limita- 
tion effects in the prey birth rate, and 
the destabilizing functional and numer- 
ical responses (1) on the predators' be- 
half (corresponding to saturation of 
their appetites and reproductive capaci- 
ties, and like effects). Working with the 
full nonlinear equations, I show here 
that essentially all such models possess 
either a stable equilibrium point or a 
stable limit cycle. 
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This rather robust theorem strongly 
suggests that those natural ecosystems 
which seem to exhibit a persistent pat- 
tern of reasonably regular oscillations 
(2) are in fact stable limit cycles. This 
interpretation is altogether different 
from the widespread explanation that 
such phenomena are associated with 
the oscillations in the unrealistically 
special neutrally stable Lotka-Volterra 
system (the stability of the frictionless 
pendulum), where the amplitude of 
oscillation depends wholly on the initial 
conditions (on how the pendulum was 
set swinging). 

The limit cycle is a familiar phe- 
nomenon in other areas of theoretical 
biology (3), and the Kolmogorov theo- 
rem invoked below has recently been 
reviewed in ecological contexts (4). 
What is new in this report is the proof 
that such limit cycle behavior is im~ 
plicit in essentially all conventional 
predator-prey models. 

For a community comprising one 
prey species and one predator species, 
whose populations at time t are x(t) and 
y(t), respectively, a general model for 
the dynamics of the system may be 
written 

dx/dt x g(x,y) (la) 
dy/dt = y h(x,y) (ib) 

where g and h are some arbitrary func- 
tions of x and y. A typical example 
from the ecological literature (5) is the 
pair of equations 

dx/dt = rx(1-x/K)-ky(1-e-? ) (2a) 
dy/dt = -by + ,3y (1 - e-t) (2b) 

The rate constants and other parameters 
in this particular pair of equations are 
as defined in (5) and elsewhere. The 
first term on the right-hand side in Eq. 
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2a is the prey birth rate, which includes 
a stabilizing density-dependent factor 
of the conventional logistic type. Were 
there no predators present, this factor 
would lead to a stable equilibrium point 
at x = K. Alternative expressions for 
the prey birth rate which are similar in 
effect, if different in detail, have been 
developed by Gompertz (6) [rx In (K/x)], 
Rosenzweig (5) {Rxl-a[1-(x/K)a], with 
1 > a > 0}, and others (7, 8). The sec- 
ond term on the right in Eq. 2a 
represents the prey loss rate due to 
predation, of the form suggested on em- 
pirical grounds by Ivlev (9). This preda- 
tion rate is proportional to x for small 
x, but saturates to a constant k for 
large x, this being a destabilizing ele- 
ment of the overall system. Other quali- 
tatively similar forms have been de- 
veloped by Gause (10) (kx2y), Rosen- 
zweig (5) (kxyy, with 1 > > 0), Holling 
(11) [kxy/(l + cx)], and others (12, 13). 
Similarly the second term on the right 
in Eq. 2b describes the relation be- 
tween prey abundance and predator 
birth rate (Holling's numerical re- 
sponse), and may have either the ex- 
plicit form given here or other equiv- 
alent forms (12, 13). The form of 
many of these interaction terms [partic- 
ularly those in the work of Watt (8, 
12) and Holling (1, 11)] is motivated 
by the observed properties of real pred- 
ator-prey communities. 

The familiar Lotka-Volterra system 
corresponds to the singular limiting 
case obtained by the use of greatly 
simplified forms for all terms in Eqs. 
2a and 2b, namely, K-> oo, c - 0 with 
ck = constant, f -> 0 with f, = constant. 
The consequent equation has purely 
neutral stability. Prey and predator 
populations will oscillate, with their 
amplitudes dependent entirely on how 
the system started off; if disturbed, the 
system will oscillate with some new 
amplitude; and so on. This is a most 
fragile result, and the slightest de- 
parture from the Lotka-Volterra form, 
for example, K not infinite, will destroy 
the neutral stability property. 

In systems such as those represented 
by Eqs. 2a and 2b there is a tension 
between the stabilizing resource-limita- 
tion term and the destabilizing func- 
tional and numerical response terms. 
In conventional analyses of such 
models, either by analytical (14) or 
graphical (15) means, the potential 
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equilibrium populations (that is, the 
points where dx/dt = dy/dt = 0) are 
found first, and then the outcome of 
this tension between stabilizing and de- 
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Limit Cycles in Predator-Prey Communities 

Abstract. Essentially all models that have been proposed for predator-prey 
systems are shown to possess either a stable point equilibrium or a stable limit 
cycle. This stable limit cycle, an explicitly nonlinear feature, is commonly over- 
looked in conventional analyses of these models. Such a stable limit cycle provides 
a satisfying explanation for those animal communities in which populations are 
observed to oscillate in a rather reproducible periodic manner. 
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isabilizing influences is studied in an in- 
finitesimal neighborhood about this 
point. If the outcome of this linearized 
stability analysis is a stable equilibrium 
point, the system is regarded as stable; 
if the outcome is an unstable point, the 
system is regarded as transient, with one 
or more species being eliminated. 

However, there is a significant, and 
much neglected, theorem of Kolmo- 
gorov (16) which tells us that such 
models possess either a stable equilib- 
rium point or a stable limit cycle. 
Kolmogorov first proved this theorem 
in a general predator-prey context, but 
its specific applicability to the conven- 
tional models catalogued above seems 
to have been overlooked. Thus those 
models which are discarded as "un- 
stable" in fact achieve a stable cyclic 
oscillation in population numbers, be- 
tween limits set not by the initial per- 
turbations but by the model parameters 
themselves. 

Kolmogorov's theorem may be ap- 
plied to any equation of the form of 
Eqs. la and lb where g and h are con- 
tinuous functions of x and y, with con- 
tinuous first derivatives. Clearly in a 
biological situation we deal only with 
populations x O 0, y t 0. The theorem 
then holds if the functions g and h have 
the following properties (17): 

g/ay < O; x Og/Ox + y Og/Oy < O (3) 

ah/ay < O; x Oh/Ox + y Oh/ay > 0 (4) 
g(0,0) > 0 (5) 

Also there exist A, B, C such that 

g(0,A) = 0, A > 0 (6) 

g(B,) = 0, B > 0 (7) 

h(C,O) = O, C > 0 (8) 
B>C (9) 

Applying this theorem to the specific 
example given by Eqs. 2a and 2b, one 
can see that the mathematical condi- 
tion given by Eq. 9 corresponds to the 
eminently reasonable biological assump- 
tion that the prey population for the 
(possibly unstable) predator-prey equi- 
librium point is smaller than that sup- 
portable by the environmental resources 
in the absence of predators. Explicitly, 
Eq. 9 requires 

Kf> In [P/(p- b)] 
which is naturally fulfilled in any 
sensible model. The remaining condi- 
tions given by Eqs. 3 through 8 are 
easily seen to be satisfied by the model 
given by Eqs. 2a and 2b. 

The other forms for the prey birth 
rate and for the predator functional 
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Fig. 1. Depiction of the "phase space" of two species, with populations x and y; each 
point in the plane corresponds to some particular value of the two populations. In 
(A) the point x*, y* is a stable equilibrium point; if the populations are displaced from 
it (for example, to point 1), they tend in time to return, as exemplified by the dashed 
line. In (B) the solid curve is a stable limit cycle, and in equilibrium the two popula- 
tions cycle around and around this trajectory, exhibiting well-defined and periodic 
oscillations in the population numbers; if displaced, either inside (for example, to 
point 1) or outside (for example, to point 2) their stable limit cycle, they tend to 
return to it, as illustrated by the dashed lines. 

and numerical responses, referred to 
above, are qualitatively similar to those 
in the explicit example, and may readily 
be seen also to comply with the criteria 
given in Eqs. 3 through 9. The claim 
that this wide class of models has either 
a stable point equilibrium or a stable 
limit cycle is thus established (18). In- 
sofar as the conventional predator-prey 
models catalogued above are realistic 
descriptions of natural communities, 
limit cycles are seen to be a common 
property of predator-prey ecosystems. 

The fact that systems, which in a 
linearized stability analysis are classed 
as "unstable," may wind out to a stable 
limit cycle is easily overlooked in com- 
puter realizations of the models, be- 
cause in most cases the ratio between 
the predator's minimum population and 
the predator's mean population in the 
limit cycle is roughly of the order (19) 

y (min) - '-' 
y (mean) x (10) 

Here a is a number of the order of 
unity, x* is the mean prey population, 
and K is the maximum prey popula- 
tion capable of being sustained by the 
environmental resources: the essential 
assumption underlying Eq. 10 is that 
K/x* is large. Since in typical com- 
puter models (20) (K/x*)2 is indeed 
substantially greater than unity, the 
ratio given in Eq. 10 is usually so small 
that the predator population is below 
unity, and therefore extinct, before the 
minimum of the limit cycle is reached. 

Indeed, so long as the cycle is severe 
enough to produce very low numbers 
of either predator or prey, stochastic 
features of the kind discussed by Bart- 
lett (21) will enter and extinction will 
occur sooner or later. In short, the 
stable limit cycle may often be of no 
practical relevance. This question is one 
that depends on the numerical details 
of the parameters in a particular model. 

The theorem presented here is likely 
to have implications for those natural 
systems in which the populations seem 
to increase and decrease in a rather 
stable periodic manner. Admittedly 
some of the population cycles reported 
in the literature are artifacts of the 
smoothing procedure employed in proc- 
essing the data (22), but others are 
not. One may expect these genuine 
cycles to be stable limit cycles, some- 
times with environmental fluctuations 
superimposed, between well-defined 
limits set by interspecific and intra- 
specific interactions. 

For example, Lack (23) has suggested 
that the population cycles of lemmings 
in northern regions are the result of 
some predator-prey interaction, with 
the lemmings playing the role of preda- 
tor and their food the prey: it is clear 
from the analysis presented here that 
a lemming-vegetation system contain- 
ing realistic interaction elements can 
naturally give rise to stable limit-cycle 
behavior. Similarly, to regard the famil- 
iar and regular oscillations of the lynx 
and hare populations recorded by the 
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Hudson's Bay Trading Company (24) as 
resulting from a pure Lotka-Volterra 
oscillation about a neutrally stable 
equilibrium point, which is to say, 
having an amplitude determined by 
some environmental shock over 100 
years ago, is quite implausible: this 
system, with the maximum hare popu- 
lation being constant to within a factor 
of 2 over 100 years or nine cycles, is 
surely the outcome of some stable 
limit cycle. This outcome, as we have 
just seen, can easily arise from the 
nonlinear food-hare-predators web. 
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lowing the possibility of limit cycles wherein 
the minimum in the prey population remains 
large enough for its Allee effect not to 
operate. 

19. This estimate is obtained from Eq. 2 on the 
assurption that the rates r and b are com- 
parable, that x*/K << 1, and that cx*, fx* 
are less than, or of the order of, unity (x* 
and y* are the populations satisfying dx/dt = 
dy/dt = 0). One may then obtain rough piece- 
wise continuous approximations for the limit 
cycle trajectory xt(t), yt(t) in the four regions 
where xt(t) and yt(t) are small or large as 
compared with the (unstable) equilibrium 
point values x*, y*. I have tested the use- 
fulness of this estimation procedure, which 
leads to Eq. 10, by comparing it with a 
series of exact computer solutions for the 
limit cycle. The approximation given in Eq. 
10 gave good order-of-magnitude agreement 
in every case tested. 

20. For example, see (5). On the other hand, 
R. H. MacArthur (personal communication) 
has empirically noticed limit cycle behavior 
in computer studies of such models. 
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Rosenzweig has warned that enrich. 

ment may destroy predator-prey systems 
(1). Using the graphical predation 
theory he and MacArthur developed 
(2), Rosenzweig has predicted that en- 
richment may cause previously persist- 
ent ecological systems to explode. This 
will happen, he says, when enrichment 
shifts the peak of the prey zero isocline 
(the collection of points in the phase 
plane at which the prey population does 
not change in density) to the right of 
the predator zero isocline. McAllister 
et al. (3) have challenged this prediction 
on experimental grounds. In this techni- 
cal comment I shall show that Rosen- 
zweig's own models do not fully support 
his conclusions, that the theory on 
which his arguments are based was in- 
complete and insufficient, and that there 
is therefore no inconsistency here be- 
tween theory and experiment. 

Rosenzweig studied what he believed 
to be six reasonable deterministic 
models of predator-prey interaction (1). 
He concluded that all show danger of 
extinction with increasing enrichment. 
He particularly concentrated on the fol- 
lowing model [model 4 in (1)]: 

dV/dt = rV(l - V/K) - kP(l - e-?) 
(1) 

dP/dt = AkP(e-" - e"-) (2) 

where V is the prey (victim) density, 
P is the predator density, and K is the 
carrying capacity of the prey. The pred- 
ator zero isocline is at V = J. The 
other parameters in Eqs. 1 and 2 in- 
fluence the shape of the prey zero iso- 
cline and the rate of the system's re- 
sponse. 

Investigating Eqs. 1 and 2, Rosen- 
zweig first shows that the prey zero 
isocline conforms to the expectations of 
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zweig first shows that the prey zero 
isocline conforms to the expectations of 

graphical predation theory; that is, it 
is peaked. He next shows that enrich- 
ment, increased K, moves this peak to 
a larger value of V and that it may 
therefore move it to the right of the 
predator zero isocline. According to 
graphical predation theory, he then 
predicts that this may cause the popula- 
tions to go to extinction. Rosenzweig 
numerically integrates Eqs. 1 and 2 and 
finds that, for a large value of K, this 
does indeed happen. 

I have used a digital computer to 
study the behavior of Eqs. 1 and 2. My 
results are not in complete accord with 
Rosenzweig's predictions. I find that 
the populations do not go to extinction 
when the peak of the prey zero isocline 
lies to the right of the predator zero 
isocline. 

The numerical values of the parame- 
ters in Eqs. 1 and 2 are relatively un- 
important, so I have chosen the follow- 
ing numbers so as to make my system 
quantitatively similar to the system 
Rosenzweig depicts in figure 1 of (1): 
r=0.05; k = 0.025; c=0.1; A = 1; 
and J = 20. For a single predator zero 
isocline, I determined the dynamic re- 
sponse for five different prey zero iso- 
clines (Fig. 1A). Figure lB shows a 
system for which the enrichment is too 
low: the predator population goes to 
extinction. Figure 1, C and D, shows 
stable systems that approach a steady 
state at the point where the two zero 
isoclines intersect. These results are in 
accord with graphical predation theory. 

Figure 1, E and F, shows systems 
that, according to graphical predation 
theory, may go to extinction. Obviously, 
they do not. Both reach stable limit 
cycles. In fact, no matter how great K 
may be, the populations modeled by 
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