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tural modification of cyclic AMP on 
enzyme systems. Accordingly, we have 
synthesized 1 ,N6-ethenoadenosine 3',5'- 
monophosphate (1), abbreviated "cy- 
clic eAMP" (4), by reaction of chloro- 
acetaldehyde with cyclic AMP under 
general conditions described earlier (5) 
and have demonstrated its behavior 
with representative enymes. 

More specifically, an aqueous solu- 
tion of chloroacetaldehyde was pre- 
pared as follows. One hundred grams 
of chloroacetaldehyde dimethylacetal 
(Aldrich) in 500 ml of 50 percent 
HQSO, (weight per volume) was re- 
fluxed gently for 45 minutes and the 
mixture was evaporated under vacuum 
while the receiving vessel was cooled. 
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The upper layer of the distillate was ad- 
justed to pH 4.5 with 1N NaOH and dis- 
tilled as before. The recovered distillate, 

1.0 to 1.6M in chloroacetaldehyde, 
was used in 20-fold excess to convert 
cyclic AMP to the derivative (1), with a 
1,N6-etheno bridge, C12H12N506P H20 
(melting at 267-8 ?C, with decom- 
position), by stirring at pH 4.0 to 4.5 
at 37?C for 24 hours, decolorization 
with charcoal, and evaporation to dry- 
ness. Reprecipitation from aqueous 
ethanol followed by a washing in 
ethanol yielded pure product. Complete 
conversion of cyclic AMP to cyclic 
cAMP was monitored by thin-layer 
chromatography and by ultraviolet ab- 
sorption (5). Both cyclic AMP and the 
etheno-bridged product 1 are stable 
under the conditions of synthesis, and 
no hydrolysis was detected by a thin- 
layer chromatographic comparison with 
3'eAMP and 5'cAMP prepared in anal- 
ogous fashion from 3'AMP and 5'AMP, 
respectively. The RF values observed 
for these compounds on Eastman 
Chromagram cellulose sheets without 
fluorescent indicator, with the solvent 
system isobutyric acid: ammonium hy- 
droxide : water (75: 1: 24, by volume), 
were as follows: cyclic eAMP, 0.27; 
3'eAMP, 0.25; 5'eAMP, 0.19, compared 
with 0.40 for cyclic AMP. The reaction 
mixture resulting from the treatment 
of cyclic AMP with chloroacetaldehyde 
showed only one bluish fluorescent spot. 
The chloroacetaldehyde-modified com- 
pounds are readily detectable under an 
ultraviolet lamp in amounts of 0.5 /tg. 
The ultraviolet spectra of 1 and eATP 
(or other reported analogs) (3, 6) are 
similar in the shape and relative heights 
of the individual maxima. Thus, struc- 
ture 1 is suitable for studies in the 
presence of nucleic acids or proteins. 
The ultraviolet absorption band of low- 
est energy lies at longer wavelength 
(m 300 nm in pH 7 buffer) than that 
of the normally occurring bases or 
aromatic amino acids, and it is thus 
possible to excite this fluorescent analog 
of cyclic AMP (1) selectively. More- 
over, it is fluorescent at neutral pH 
(maximum near 410 nm) and in ionic 
environments (6). The long fluorescent 
lifetime (close to 20 nsec) and the pos- 
sibility of detection at very low concen- 
traction (~ 1 X 10-8M) provide the 
opportunity for using more detailed 
fluorescence techniques. 
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AMP regulates at least certain differen- 
tiated functions of eukaryotic cells. Cy- 
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Fluorescent Modification of Adenosine 3',5'-Monophosphate: 
Spectroscopic Properties and Activity in Enzyme Systems 

Abstract. The synthesis of a highly fluorescent analog of adenosine 3',5'-mono- 
phosphate, namely, 1,N6-ethenoadenosine 3',5'-monophosphate, has provided a 
powerful probe for systems involving adenosine 3',5'-monophosphate. The poten- 
tial utility of this analog is indicated by its long fluorescent lifetime, detectability 
at low concentration, and relatively long wavelength of excitation (3,00 nano- 
meters). In protein kinase systems it is a highly acceptable substitute for adenosine 
3',5'-monophosphate. 
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Fig. 1. Effect of cyclic AMP and cyclic 
eAMP on the activity of protein kinase. 
Activity was measured by a modification 
of the method of Reimann et al. (11). 
The assay mixture (50 ul) contained 
[ry-"P]ATP, 0.75 mM (2 to 4 x 108 count/ 
min per micromole); MgCl2, 18 mM; 
arginine-rich calf thymus histone, 2 mg/ml; 
tris(hydroxymethyl) aminomethane hydro- 
chloride, pH 7.8, 50 mM; and the appro- 
priate amounts of cyclic AMP or cyclic 
cAMP to give the final concentrations 
desired. To these test solutions, 40 Al of 
protein kinase were added; the mixtures 
were incubated at 30?C and after 10 
minutes 75-l1 portions were transferred to 
filter paper squares, and the protein was 
precipitated and washed as described by 
Reimann et al. (11). The Ka for cyclic 
eAMP was 6 X 10-7M (crosses), and the 
K, for cyclic AMP was 6 X 10-sM (circles); 
V is reaction velocity. 

protein kinases-apparently by binding 
to a regulatory subunit of the enzyme 
and causing its dissociation from a cata- 

lytic subunit (7). The catalytic subunit 
is fully active only when thus removed 
from the restraint of the regulatory sub- 
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Fig. 2. Competition between cyclic [3H]- 
AMP and cyclic eAMP for binding to 

protein kinase from bovine skeletal mus- 
cle. Binding was determined by the 
method of Gilman (9) at pH 4 (50 mM 
sodium acetate). Concentrations of cyclic 
['H]AMP were 5 X 10-?M (circles), 2 X 
10-'M (squares), and 1 X 10-7M (triangles). 
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unit. The ability of the 1,N6-etheno de- 
rivative of cyclic AMP to substitute for 
the parent compound was tested on 
purified muscle protein kinase, which 
is stimulated by cyclic AMP. This en- 
zyme was assayed by the phosphoryla- 
tion of histone, as well as by the phos- 
phorylation of purified muscle glycogen 
synthase I and its conversion to syn- 
thase D (8). At pH 7.8, the Ka of cy- 
clic AMP on both systems was 6 X 
10-8M; at this same pH, the Ka for 
the cyclic EAMP as activator for the 
phosphorylation of histone (Fig. 1), or 
for the conversion of synthase I into 
synthase D, was found to be 6 X 10-7M 
(6.2 to 6.5 X 10-7M). At pH 6.0, the 
Ka of cyclic eAMP for activation 
of histone phosphorylation was 4 X 
10-7M. 

In the same system, eATP (3) was 
able to act as phosphate donor in the 
conversion of glycogen synthase I to D 
(Table 1), although eATP was some- 
what less effective than ATP. Also, 
when eATP was used in this reaction 
in place of ATP, the Ka for cyclic 
AMP increased to 9 X 10-7M. Sucrose 

density gradient centrifugation of mus- 
cle protein kinase in the presence of 1 X 
10-6M cyclic eAMP or 1 X 10-6M 

cyclic AMP showed identical dissocia- 
tion patterns of the enzyme. 

Relative abilities of cyclic AMP and 

cyclic eAMP to compete with cyclic 
[3H]AMP for binding sites on protein 
kinase were then compared. At pH 4 

(the optimum pH for cyclic AMP bind- 

ing), cyclic eAMP competed for bind- 

ing sites with a Ki of 1 X 10-8M (Fig. 
2). The binding constant for cyclic 
AMP at this pH approximates 2X 
10-9M (9). The same relative affinities 
were apparent at pH 6, where the bind- 

ing constant for cyclic AMP is five 
times higher. 

From these experiments it can be 
concluded that cyclic eAMP acts on 

protein kinase in a similar manner to 

cyclic AMP, most likely by the same 
mechanisms. The effective concentra- 
tion of the E derivative is about one 
order of magnitude larger than that for 

cyclic AMP. 
It was also determined that cyclic 

eAMP is a substrate for bovine cardiac 

cyclic nucleotide phosphodiesterase, 
prepared by the method of Butcher and 
Sutherland (10). With this enzyme the 
initial rate of cyclic eAMP hydrolysis 
(at 1 mM concentration) was approxi- 
mately 25 percent of that for cyclic 
AMP (0.5 mM). 

The activity of cyclic eAMP in the 

Table 1. Relative activity of cyclic eAMP 
and of eATP as compared with cyclic AMP 
and ATP in the glycogen synthase I kinase 
reaction. Glycogen synthase I kinase (protein 
kinase) was purified from rabbit skeletal 
muscle and assayed as described by Schlender 
et al. (8). The final concentration of ATP 
or eATP was 5 mM; final concentrations of 
cyclic AMP or cyclic cAMP, when added, 
were 1 I,M. Conditions have been described 
(8). Results are average of three determina- 
tions, each duplicate. 

Synthase I activity 
(units per milliliter 

Experiment of kinase per minute) 

ATP eATP 

Control 1.85 1.20 
+ Cyclic eAMP 3.84 2.57 
+ Cyclic AMP 4.90 3.63 

enzyme systems examined, combined 
with its useful fluorescence properties, 
should make it an asset in further elu- 
cidation of the behavior of cyclic AMP. 
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