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The results in this report add to, the 
body of evidence that vitamin D must 
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(OH)2D3 is not metabolized further 
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Suitably primed T lymphocytes (thy- 
mus-dependent or thymus-processed 
cells), when stimulated by antigen, re- 
lease a variety of physiologically active 
factors (1). Prominent among these are 
"lymphotoxin" (2-4), "proliferation in- 
hibitory factor" (5), and an "inhibitor of 
DNA synthesis" (6). Release may also 
be triggered by nonspecific lymphocyte 
mitogens such as phytohemagglutinin 
and concanavalin A. Release precedes 
and is not necessarily correlated with 
increased synthesis of lymphocyte DNA 
and with blast transformation. The B 
lymphocytes (thymus-independent) can 
be stimulated by antigen (7, 8), anti- 
serum to immunoglobiulin (9), or mito- 
gens such as lipopolysaccharide endo- 
toxin (10) and appear to produce and 
release specific antibody (8, 11), but 
there is no information to show wheth- 
er or not they also release active factors 
like those mentioned above. 

The detailed mechanism of lympho- 
cyte triggering has been extensively 
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ble to those which affect microfilament function and cell motility in oth, 
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Table 1. Reversible inhibition of lympho- 
toxin production by cytochalasin B. Sensitive 
or normal lymph node cells (18 X 107 in 3 
ml) were incubated for 12 hours with or 
without ovalbumin (50 tzg/ml) and cytochala- 
sin B (5 ,ug/ml) or dimethyl sulfoxide (0.17 
percent). After thorough washing, cells (12 
X 107 in 2 ml) were reincubated for 16 hours 
with or without antigen. All supernatants from 
the first but not the second incubation were 
dialyzed for 12 hours before addition to the 
fibroblast monolayer (A, antigen; I, inhibitor; 
SF, surviving fibroblasts; DMSO, dimethyl 
sulfoxide; CB, cytochalasin B). 

First Second 
incubation incubation 

A I 10 SF A 10 SF 

Sensitive lymph node cells 
+ DMSO 2.6 0 4.3 
+ DMSO 3.2 + 3.8 
0 DMSO 7.6 - 3.2 
I- CB 7.9 0 4.7 
+ CB 7.9 4- 4.1 
0 CB 7.9 + 4.9 

Normal lymph node cells 
+ DMSO 7.9 
+ CB 7.9 

_ _ 

and Fig. 1 are averages of duplicate 
determinations. Cytotoxic activity, rep- 
resenting the presence of lymphotoxin, 
was detectable in supernatants of sen- 
sitive LNC incubated for 6 hours with 
ovalbiumin and was maximal by 12 
hours (Fig. 1). There was no subse- 

quent increase in the apparent activity 
of lymphotoxin, and after 36 hours ac- 

tivity waned, perhaps because lympho- 
toxin was degraded enzymatically or 
inactivated by an inhibitor. Normal 
LNC did not produce lymphotoxin, nor 
did sensitive LNC incubated with heter- 

ologous protein antigens. 
Cytochalasin B (29), 3 mg/ml in di- 

methyl sulfoxide (DMSO) (30), was 
diluted with medium, and 0.1 ml of the 
dilution was added to LNC cultures. 
Control cultures received DMSO diluted 
to the same extent. After incubation 
for 12 or 24 hours, the supernatants 
were routinely dialyzed for 12 hours at 
4?C against three changes of Ham's 
F10 medium, while undialyzed control 

supernatants were held at 4?C. The re- 
moval of cytochalasin B by dialysis was 
essential because this substance inhibited 
fibroblast division and gave multinucle- 
ate cells, so that low fibroblast counts 
were false indicators of cytotoxicity. 
Lymphotoxin was not dialyzable. As 
shown in Table 1, lymphotoxin produc- 
tion was completely inhibited over a 
12-hour period by cytochalasin B, 5 

,tg/ml. The differences in cytotoxicity 
shown were highly significant. In exper- 
iments not shown here, complete inhibi- 
tion was also observed at cytochalasin 
B concentrations between 0.5 and 5 
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jg/ml, and partial inhibition was seen 
at 0.1 to 0.25 ,ug/ml. Once formed, 
lymphotoxin was not affected by incu- 
bation for 1 hour at room temperature 
with cytochalasin B and subsequent 
dialysis. 

To test the reversibility of inhibition 

by cytochalasin B, 18 X 107 sensitive 
LNC in 3 ml were incubated for 12 
hours with or without ovalbumin in the 

presence of cytochalasin B, 5 [jg/ml. 
A 2-ml portion of the supernatant was 
dialyzed and assayed for cytotoxicity. 
The cells were washed three times in 
cold fresh medium, and 12 X 107 cells 
in 2 ml were incubated with or without 
additional antigen for a further 16 
hours. These cells showed an essential- 

ly normal production of lymphotoxin 
(Table 1). Thus the effect of cytocha- 
lasin B is reversible and cannot be at- 
tributed to generalized cell damage. In 
fact, sensitive LNC incubated with 
ovalbumin in the presence of cytocha- 
lasin B showed higher viability, as mea- 
sured by trypan blue exclusion, than 
did cells incubated without cytochalasin 
B. 

To study a later event that normally 
follows specific antigenic stimulation, 
we examined DNA synthesis in similar 
sensitive LNC cultures (2 X 106 cells 
in 1 ml of medium) to which ovalbumin 
(25 p/Jg/ml) and graded amounts of 
cytochalasin B were added. After 48 
hours of incubation, tritiated thymidine 
(31) was added, 1.0 p,c/ml, before a 
further 24 hours of incubation. Uptake 
of tritiated thymidine was determined 
as in earlier studies (10, 32). At cyto- 
chalasin B concentrations between 0.2 
and 2.0 /Ig/ml, inhibition of DNA syn- 
thesis was proportional to the logarithm 
of the concentration (Fig. 2). This 
inhibition was completely reversible. 

The observations reported here show 
that formation or release of lympho- 
toxin, part of the early protein synthesis 
occurring several hours after triggering 
of sensitized lymphocytes with specific 
antigen (3), is inhibited by cytochalasin 
B. Subsequent blast transformation, as 
measured by uptake of tritiated thymi- 
dine, is also inhibited, in agreement with 
the findings of Webster and Allison 
[cited in (17)]. Earlier work (22), 
showed in almost all instances a close 
correlation between movement presum- 
ably mediated by contraction of micro- 
filaments and cell function; cytochalasin 
B produces morphologic changes in 
the former while inhibiting the latter. 
The concentrations at which lympho- 
toxin production and DNA synthesis 
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Fig. 2. Inhibition of incorporation of tri- 
tiated thymidine into sensitized lymph 
node cells. Cells (2 X 106) were incu- 
bated for 72 hours in the presence of 
ovalbumin (25 Agg/ml) plus graded con- 
centrations of cytochalasin B. A pulse of 
tritiated thymidine was given during the 
last 24 hours. 

are inhibited and the reversibility of 
this inhibition suggest the similarity of 
our test system to others studied. We 
observed complete abolition of both 

lymphotoxin release and DNA synthesis 
at cytochalasin B concentrations greater 
than 0.5 jlg/ml and partial inhibition at 
0.1 to 0.25 jug/ml, conicentrations com- 

parable to those which affect spontane- 
ous motility, chemotaxis, phagocytosis, 
and pinocytosis (21-23, 33). When we 
washed cells at the end of a 12-hour 
inicubation with antigen and cytocha- 
lasin B, they formed lymphotoxin with- 
out further exposure to antigen. This 
establishes that cytochalasin B had no 
effect on binding of antigen as such but 
inhibited a later event. It may also 

imply that the antigen-antibody aggre- 
gates formed at the surface persist un- 
altered throughout this period. Possibly 
certain early events, such as the activa- 
tion of adenylate cyclase (34), fail to 

go to colmpletion or perhaps are irrele- 
vant to microfilament contraction, pino- 
cytosis, and the other early steps lead- 

ing to gene activation and protein syn- 
thesis. Siskind and Thorbecke (35) have 
found that exposure to antigen at 4?C, 
followed by washing, triggers the cells 
for subsequent blast transformation. 
However, in their study, prolonged ex- 

posure (3 hours) resulted in desensiti- 
zation ("tolerance") of the cells. 
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Auditory Induction: Perceptual Synthesis of Absent Sounds 
Abstract. Within certain auditory patterns, fainter sounds may be "heard" 

clearly when replaced by louder sounds having appropriate spectral compositions. 
This auditory induction of fainter by louder sounds can cancel the perceptual 
effects of masking. Phonemic restorations, which have been reported previously, 
appear to be a specialized application to speech of the much broader phenomenon 
of auditory induction. The rules governing auditory induction indicate that it 
helps maintain stable auditory perception in our frequently noisy environment. 
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When a speech sound or syllable 
within a sentence is deleted and replaced 
by a louder extraneous sound, listeners 
believe they hear the excised portion 
and cannot detect which part of the 
sentence is missing (1). When we re- 
ported this ability to perceptually syn- 
thesize missing phonemes, we did not 
suspect that it could be considered as 
a special case of a much broader audi- 
tory phenomenon. Speech components 
are not the only types of sounds that 
can be "heard" when they are not 
present. There appear to be at least two 
other types of perceptual synthesis that 
can be grouped under the generic term 
of auditory induction (AI). 

We discovered the second type of AlI 
when we repeated without pauses se- 
quences consisting of three intensity 
levels of the same sound. Thus, when a 
2000-hz octave band noise was pre- 
sented through headphones at three in- 
tensities (for example, 60, 70, and 80 
db above 0.0002 kbiar) with each suc- 
cessive level lasting for 300 msec, and 
the sequence was recycled without 
pause, then the faintest sound appeared 
to be on continuously, coexisting with 
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Fig. 1. Auditory induction and masking 
for tones in the presence of a louder 
1000-hz tone presented at a sound-pres- 
sure level of 80 db. The values are the 
means for six subjects. 
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each of the two louder sounds. This is 
a puzzling and seemingly paradoxical 
auditory effect, for were the fainter 
sound to remain on, it should fuse with 
the louder sounds of the same spectral 
characteristics. Nevertheless, all subjects 
(20 undergraduate students, 8 graduate 
students and staff) reported this AI 
whether or not they were aware of the 
physical nature of the auditory pattern 
and the paradoxical implications of 
perceiving the faintest sound as con- 
tinuous. The order of the three sounds 
was not crucial (the position of the 
middle and loudest intensities could be 
interchanged), nor was the spectral 
composition of the sound. However, 
temporal contiguity was important, and 
50 msec of silence between successive 
sounds prevented AI. 

This type of AI involving spectrally 
identical sounds did not require that 
the repeated sequence consist of three 
intensities; 300-msec presentations of a 
2000-hz octave band noise alternating 
between sound-pressure levels of 70 and 
80 db resulted in illusory continuity of 
the fainter sound. Presenting other nar- 
row noise bands, broad noise bands, 
and tones at alternating intensities also 
produced AI. These observations sug- 
gested the possibility that alternating 
the intensity of spectrally different 
sounds (for example, tones of two fre- 
quencies, or a tone and a noise) might 
give rise to a third type of AI having 
illusory persistence for durations com- 
parable to those of the other two. There 
have been reports that this type of illu- 
sory continuity exists at rapid alterna- 
tion rates (2). In these experiments, the 
illusory persistence of the fainter of 
two qualitatively different sounds was 
limited to about 5 to 90 msec, with 
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