
has been observed (14). Cells of Chlo- 
rella vulgaris, however, require much 
longer periods of sonication to be rup- 
tured, and the released cell walls are 
quite resistant to further disintegration. 
Thus Chlamydomonas walls are more 
susceptible to mechanical rupture than 
Chlorella walls are, though the thickness 
of their walls is nearly the same [21 
nm for Chlorella (15) compared to 19 
nm for C. reinhardtii (16)]. This weak- 
ness of the wall may be correlated with 
the fact that Chlamydomonas maintains 
its osmotic balance via energy-expend- 
ing contractile vacuoles, rather than via 
wall pressure as in more advanced plant 
types. Although the weak walls of 
Chlamydomonas appear to lack cellu- 
lose (16), this does not mean that the 
absence of cellulose is the cause of the 
weak wall. Coenocytic algae such as 
Codium (17) also lack both cellulose 
and contractile vacuoles but possess 
relatively rigid walls that contain hy- 
droxyproline (12). Therefore it seems 
possible that the changeover from hy- 
droxyproline heterooligosaccharides to 

homooligosaccharides marks a funda- 
mental evolutionary transition from 
wall organization which was mechan- 
ically weak to a wall organized in such 
a way (a highly cross-linked covalent 
network) as to provide sufficient tensile 
strength to balance internal and ex- 
ternal osmotic pressures. Experimental 
proof of this hypothesis awaits further 
study. 
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:Hyp D to Hyp G occupy. The presence of 
trace quantities of Hyp-Ara3 and Hyp-Ara4 
might account for the somewhat higher than 
expected yields of arabinose in peaks Hyp D 
to Hyp G. There can be only trace amounts 
of Hyp-Ara3_4, however, because substantial 
quantities of them would lower the Gal: Hyp 
molar ratios and any large amount of Hyp- 
Ara4 would appear as Hyp-Araa in the mixture 
of Hyp glycosides released from Hyp D and 
E. Such a glycoside was not released in any 
detectable amount. 

10. Mild acid hydrolysis of glycosides B to G 
released these Hyp glycosides. Quantitative 
analysis of each glycoside indicates a tenta- 
tive sequence for each oligosaccharide; the 
present data do not exclude a branched 
structure. In a few cases, where no sugar is 
indicated, trace amounts (less than 5 percent 
of the total sugar present) appeared on paper 
chromatograms. These traces probably arose 
from sugars actually present and undergoing 
epimerization as a result of the acidic condi- 
tions. Glycosides are listed in the order they 
eluted from the column, from largest to small- 
est. The percentages of total hydroxyproline 
give an indication of the relative lability of 
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than that reported for humans, but did 
made for such birds. 

Although man has assigned to him- 
self the highest niche in the order of 
evolution, many lower forms may sur- 
pass human abilities in certain aspects 
of sensory performance. For instance, 
almost any lower vertebrate is thought 
to have a keener sense of smell, bats 
and dogs to be sensitive to a wider 
range of auditory frequencies, cats and 
owls to have better visual performance 
under low levels of illumination, and 
hawks and eagles to possess keener 
vision. The last of these assertions is 
supported largely by anecdotal evi- 
dence, and by microscopic examination 
of bird retinas. Rochon-Duvigneaud 
estimated that the density of cones in 
the central fovea of the hawk reaches 
1 million per square millimeter. (1), 
which may be compared with perhaps 
147,000 per square millimeter in the 
center of the human fovea (2). Both 

Rochon-Duvigneaud and Polyak sur- 
mised that the visual acuity of the 
birds of prey surpassed that of man, 
but they did not offer quantitative esti- 
mates (1, 3-6). However, Walls (7) 
states that in the central fovea an eagle 
could reach acuities eight times that 
of man! 

Walls's claim is undoubtedly exag- 
gerated-the human visual system be- 
comes diffraction limited and reaches 
its maximum performance at a pupil 
diameter of 2.3 to 2.4 mm (8, 9). The 
cutoff frequency of a perfect optical 
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not confirm some of the wilder claims 

system is directly proportional to the 
diameter of its entrance pupil. A bird 
would therefore require a pupil at least 
18.4 mm in diameter to be theoretically 
capable of fulfilling Walls's expectations, 
a dimension which is beyond the capa- 
bility of even the largest birds of prey 
(3-5, 10). 

The size and organization of the eagle 
eye does suggest that its resolving power 
is extremely high, but the retinal mo- 
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Fig. 1. Three selected linespreads measured 
external to the eagle's eye. Except for small 
errors introduced by source and slit width 
differences, these waveforms may be com- 
pared directly to the external linespreads 
obtained for the human eye by Campbell 
and Gubisch (8). 
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saic is only one element of the visual 

system. Lacking is information on be- 
havioral performance and on the prop- 
erties of the image. Below I report an 

attempt to measure the quality of the 
retinal image formed by an eagle's 
visual optics. 

The methodology was that of Camp- 
bell and Gubisch (8) with minor mod- 
ifications. A straight wire tungsten 
lamp (G.E. No. 1872) was 1 m from 
the eye, with its axis oriented vertically. 
At this distance it subtended 0.29 min- 
ute of arc horizontally and was masked 
to subtend 30 minutes vertically. The 
natural pupil was used, the lamp being 
viewed through an aperture 12 mm in 
diameter and a +1 diopter eye lens. 
The image formed on the retina be- 
comes in turn a source which is re- 
imaged exterior to the eye. By way of 
a pellicle beam splitter and a scanning 
mirror, this second image projected 
onto an analyzing slit 1 m from the eye 
which subtended 0.35 by 30 minutes of 
arc. The scanning mirror was pivoted 
about a vertical axis, and when driven 
electromechanically by a sawtooth 
waveform caused the external image to 
move across the analyzing slit. The scan 
covered 80 minutes of arc and was per- 
formed once every 2 seconds. The light 
entering the slit was detected by an 
EMI 9558B photomultiplier (S-20 
photocathode) and was displayed con- 

tinuously on a Brush Mark 280 recti- 
linear chart recorder. The resultant 
waveforms represent the linespread 
function of the subject eye degraded by 
a second passage through the optics, by 
the source and slit widths, and by scat- 
tered light. The source lamp was run at 
6 volts d-c, which gave a color tem- 

perature of about 3000?K. Ignoring 
the spectral property of the eagle's 
fundal reflection, the product of the 
source and photocathode gives a spec- 
tral response curve with 95 percent of 
its area between 400 and 760 nm and 
a broad peak at 600 nm. 

The subject, obtained on rental from 
a local pet store, was identified as an 
African Serpent Eagle, Dryotriorchis 
spectabilis, a medium-sized eagle with 

large head and eyes (11). The bird 

weighed 1.33 kg and was in vigorous 
good health, although it had sustained 
some superficial injuries and feather 
loss in capture and transit. The eagle 
was gently wrapped in a large towel, 
and once properly restrained, it re- 
mained relaxed during the procedure. 
Measurements were made by simply 
holding the animal up to the eyepiece 
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for the visual optics of the eagle, 
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with a pupil 2.4 mm in diameter. 
All three avian functions are substanti- 

ally superior to estimates of maximum 
human performance (8, 14). When 
measured by identical methods, human 

optics at best cut off at approximately 
60 cycle/deg (8); the eagle cutoff at 
120 cycle/deg (Fig. 2) is twice the 
human value and may yet improve at 
smaller pupil diameters. 

How superhuman might an eagle's 
visual acuity be? From published sec- 
tions of heads of diurnal rapacious 
birds (5) I estimate the ratio of the 
width of the skull just posterior to the 
lateral canthus, to the axial length of 
the eyeball, to be 2: 1. I have mea- 
sured that skull width on four pre- 
served specimens of Dryotriorchis 
spectabilis and obtained a mean of 48 
mm, which corresponds to an eyeball 
length of about 24 mm. For the eye 
of a Golden Eagle 29 mm long, 
Rochon-Duvigneaud estimated a focal 
length of 19 mm (10). When this is 
scaled down, the African Serpent Eagle 
will have a focal length of 15.5 mm, 
compared to the human's 17 mm 
(15). The theoretical resolving power 
of the retinal mosaic is proportional to 
the square root of receptor density; 
from hawk data (1) the ratio to human 
(2) foveal resolution is then 2.6: 1. 
After correction for optical magnifica- 
tion, this becomes approximately 2.4: 1. 
It is impossible to characterize a trans- 
fer function by a single number, but on 
the basis of cutoff frequencies the eagle 
to human ratio is 2 : 1. It seems fair to 
conclude that the visual system of the 
eagle under test may be capable of from 
2.0 to 2.4 times human resolution. 
On the basis of size the Golden Eagle 
Aquila chrysaetos might reach 2.4 to 
2.9 times, and the Martial Eagle Spiz- 
aetus bellicosus, which is reported to 
have an eye 36 mm long (4), might 
reach 3.0 to 3.6 times human visual 
acuity. 

In evaluating avian visual perform- 
ance, certain other factors should be 

kept in mind. If examined in ordinary 
(probably tungsten) light, many diurnal 
birds are somewhat hyperopic (5, 16). 
When chromatic aberration is taken 
into account, this refraction will allow 
birds to accommodate to distant ob- 

jects in blue light, something an em- 

metropic human eye cannot do (17). 
Avian ability to detect objects against 
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Secondly, the small size of eagle cones 
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ble light (1, 4-6) means that they are 
inefficient absorbers of radiant energy. 
Consequently, the photopic visual per- 
formance of eagles must fall off very 
rapidly as luminance decreases. 
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ble light (1, 4-6) means that they are 
inefficient absorbers of radiant energy. 
Consequently, the photopic visual per- 
formance of eagles must fall off very 
rapidly as luminance decreases. 
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animal bone is seemingly an obvious 
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cause of problems with residual or- 
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reactions. Another possible means of 

repair of fractured bone or damaged 
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plants from materials compatible with 
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nails, and other items fashioned from 

highly polished metal alloys such as 
Vitallium, for example, have been 

widely used, but these implants often 
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cause inflammation and excessive devel- 

opment of fibrous tissue. Corrosion of 
metal and lack of long-term mechanical 
attachment are further disadvantages, 
although attempts to increase the de- 

gree of tissue attachment by sintering 
a layer of metal spheres to the outer 
surface of the Vitallium have been re- 

ported (1). Sintered titanium fiber 

composites have also been evaluated 
(2). Other potential prosthetic mate- 
rials include phosphate bonded alumina 

(3), and porous ceramics (4). The diffi- 

culty in controlling pore size, and more 

important, the size of the interconnec- 
tions between adjacent pores, has been 
a major limitation in the production of 

porous ceramics (4). We now describe 
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Replamineform: A New Process for Preparing Porous Ceramic, 

Metal, and Polymer Prosthetic Materials 

Abstract. The replamineform process (meaning replicated life forms) is a 

technique for duplicating the microstructure of carbonate skeletal components in 
ceramic, metal, or polymer materials. The special pore structures of marine inver- 
tebrate skeletal materials such as echinoid spines and corals, which are difficult 
or impossible to create artificially, can thus be copied in useful materials. Of 
immediate interest is the possibility of using these replicated microstructures in 
the fabrication of orthopedic prosthetic devices. By means of this technique, 
prosthetic materials having a controlled pore microstructure for optimum strength 
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