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two anaplastic sarcomas, and two osteo- 
genic sarcomas. Finally, since infectious 
SV40 was not recovered from the cells 
of two lymphosarcomas, three anaplas- 
tic sarcomas, and three osteosarcomas 
when grown in culture for 1 week in 
the absence of GMK indicator cells, it 
appears that the SV40 T antigen is not 
an expression of a recurrent infectious 
process, but rather, it is a manifesta- 
tion of the oncogenic state. 

The above data indicate that, under 
appropriate experimental conditions (9) 
relating bboth to the host (species, 
age) and to the viral agent (dos- 
age, route of inoculation), the DNA 
virus SV40 can induce leukemia, lym- 
phoma, and osteosarcoma in addition 
to the anaplastic sarcoma with which 
it is already known to be associated. 
These findings do not support the view 
held by some investigators that viruses 
which induce experimental leukemia, 
lymphoma, and osteosarcoma are al- 
ways of the RNA type (1, 10). It 
should be of great interest, therefore, 
to determine whether other oncogenic 
DNA viruses (polyoma virus, adeno- 
viruses) can induce, under comparable 
experimental conditions, hematopoietic, 
lyimphoreticular, and osteomesenchy- 
mal malignant neoplasms. This may 
well prove to be the case, since evi- 
dence has been presented which sug- 
gests that polyoma virus may rarely 
cause osteosarcoma in the mouse (11), 
and that herpes DNA viruses can in- 
duce avian (2) and simian (3) lympho- 
matous proliferatio,ns. Furthermore, 
there is some evidence suggesting that 
a herpes-type virus, the Epstein-Barr 
agent (12), may be related etiologically 
to Burkitt's lymphoma, a neoplasm 
that affects predominantly children 
living in Africa (13). 

Although a decision on the issues 
raised should await the results of fur- 
ther inquiry, we can now state with as- 
surance that, for the first time, a DNA 
virus other than a member of the herpes 
group has been implicated in the ex- 
perimental induction of leukemia, lym- 
phoma, and osteosarcoma. It is evident, 
therefore, that, in attempting to isolate 
and identify viral agents possibly in- 
volved in analogous diseases of man, 
attention should be directed toward 
DNA viruses. 
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adenylate cyclase that produces cyclic 
AMP from adenosine triphosphate 
(ATP). The cyclic AMP then activates 
protein kinases in the cytoplasm which, 
in turn, phosphorylate several enzymes 
or contractile proteins within the cell 
to modulate the activities of these 
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macromolecules. A second controlling 
influence in the cell is postulated to be 
the calcium ion (Ca2+). The mobiliza- 
tion of calcium from intracellular 
pools, or its influx from extracellular 
fluid, are thought to occur by hormonal 
or electrical stimulation of the cell 
plasma membrane or by an action of 
cyclic AMP on intracellular mem- 
branes. The increased intracellular 
concentration of Ca2 + may induce 
other enzyme reactions within the cell, 
or it may act as a negative feedback 
control on adenylate cyclase. Calcium 
pumps are also considered to play a 
role in the active efflux of calcium 
from the cell. Rasmussen (5) suggests 
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Hormone-Calcium Interactions with the 

Plasma Membrane of Rat Liver Cells 

Abstract. The binding constants and the number of binding sites for insulin, 
glucagon, epinephrine, cyclic adenosine monophosphate, and calcium ions for the 
plasma membrane of rat liver were determined by Scatchard plots. The plots are 
biphasic or multiphasic, an indication of at least two types of binding sites for 
each ligand. At least three types of binding sites were found for insulin. In the 
concentration range of 10-6 to 10-8 molar, glucagon, epinephrine, and hydro- 
cortisone increased calcium ion binding to the plasma membrane, whereas insulin 
decreased this binding. At hormone concentrations of 10-6 to 10-7 molar, 
glucagon was the most effective in increasing calcium binding, but at a hormone 
concentration of 10-8 molar, hydrocortisone was the most effective in stimulat- 
ing calcium binding. Adenosine triphosphate reversed the effect of insulin and 
inhibited the effect of the other hormones. These studies suggest a relation 
between hormones and calcium with respect to membrane structure and function. 
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Fig. 1. The effect of hormones 
binding of calcium ions to the 
membrane. Membranes (60 to 7 
protein) were incubated with 
CaC12 (containing 0.5 tuc of 4Ca) 
minutes at 37?C in a total volum 
ml containing 0.1M tris buffer, 
and varying amounts of hormo 
binding of 5Ca was determ: 
described in Table 1. 
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types of binding sites. The high af- 
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specific binding. The lowest hormone 
concentration was that for insulin 

(10-9 to 10-11M). The high affinity 
site was saturated at about 10-9M 
insulin and had a binding constant of 
1010 M-1. A dissociation constant of 
6.7 X 10O-1M has been calculated for 
insulin binding to crude liver mem- 
branes (19). 
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m ~ The binding constants for cyclic AMP 

and calcium ions are much lower than 
those for the hormones, and the num- 

on the ber of binding sites are much greater. 

poag of This is not unexpected for calcium 
0.001M since Ca2+ can bind to a number of 

) for 10 ionized anionic functional groups on 
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The binding of calcium to isolated 
plasma membranes has the following 
characteristics (28): (i) an optimum 
pH of 7.8 to 7.9; (ii) saturation kinet- 
ics where equilibrium is attained after 
10 to 20 minutes; (iii) a binding that 
is inhibited Iby EDTA and Mg2+ ions, 
but not by Nal+ or K'+; (iv) a bind- 
ing that is decreased by prior treatment 
of the membrane with Pronase, trypsin, 
neuraminidase, and phospholipase C, 
but increased by treatment of the 
membrane with phospholipase D. 

The effect of hormones on binding 
of calcium to the membrane is shown 
in Fig. 1. Epinephrine, glucagon, and 

Table 1. Binding of glucagon, insulin, epi- 
nephrine, cycle AMP, and Ca+2 to the plasma 
membrane. Binding of glucagon and insulin 
was determined by incubating membranes 
(60 to 70 ,ug of protein) for 10 minutes at 
37?C in 1 ml of 0.1M tris(hydroxymethyl)- 
aminomethane buffer (tris), pH 7.5. Glucagon 
(0.5 to 6.0 juc) was tested over the range 10-5 to 
10-SM. Insulin (0.5 to 0.05 /c) was used 
from 10- to 10-rM. After 10 minutes, 
2 ml of ice-cold 0.1M acetic acid were added, 
and the membranes were centrifuged at 2800 
rev/min for 15 minutes. The supernatant was 
discarded, and the membrane pellet was 
washed twice with 2 ml of 0.1M acetic acid. 
The pellet was dissolved in 1 ml of solubilizer 
(NCS, Nuclear-Chicago), and was then di- 
luted with 10 ml of Brays scintillation solu- 
tion. The binding of epinephrine and cal- 
cium was determined by incubating mem- 
branes (60 to 70 /zg of protein) for 10 min- 
utes at 37?C in 1 ml of 0.1M tris buffer, 
pH 7.5. Epinephrine (0.6 ,/c) was tested at 
concentrations of 10- to 10-sM, and calcium 
(0.5 tLC) was tested at concentrations of 10-3 
to 10-7M. After 10 minutes, the membrane 
suspension was filtered through HA 0.45 urn 
Millipore filter disks (diameter, 25 mm), and 
washed two times with 5 ml of tris buffer. 
The filter disks were placed in counting vials 
containing 10 ml of Brays solution, and the 
radioactivity was measured (Packard liquid- 
scintillation spectrometer). Binding of cyclic 
AMP (10-4 to 10-8M, containing 0.01 Ac of 
cyclic AMP) was measured by equilibrium 
dialysis as no binding was detected by the 
Millipore procedure. The K2 for cyclic AMP 
was very small and is not included in the 
table. 

Binding sites 
Association (picomoles per 

Order constant milligram of 
(M-1) membrane 

protein) 

Glucagon 
K, 9.4 X 108 ni 50 
Ks 3.1 x 10 ns 1300 

Insulin 
K, 1 X1010 ni 0.1 
K, 4.1 X 106 n2 56 
K, 1.3 X 105 ns 1270 

Epinephrine 
K, 1.8 X 107 ni 13 
K2 1.4 X 106 ni 162 

Ca'+ 
K, 4.0 X 103 ni 22,000 
K2 3.1 x 102 n, 126,000 

Cyclic AMP+ 
K, 7.3 X 104 n, 41,000 
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hydrocortisone at concentrations of 
10-6 to 10-8M, increased Ca2+ 
binding whereas insulin decreased Ca + 

binding. At hormone concentrations of 
10-6 to 10-7M, glucagon had the 
greatest effect, but at 10-8M, hydro- 
cortisone exerted the greatest effect. 
Glucagon and epinephrine both stimu- 
lated binding most at 10-7M, but the 
stimulation by hydrocortisone increases 
with decreasing hormone concentra- 
tion. With hydrocortisone, a hydropho- 
bic hormone, the physical state of dis- 
persion may influence its effect on the 
membrane. 

Adenosine triphosphate at a con- 
centration of 0.3 mM abolished the ef- 
fect of insulin, and decreased the effect 
of the other hormones. 

Inasmuch as the concentration of 
each hormone is very small, the 
hormone effects cannot be stoichiomet- 

rically related to the Ca2+ binding. In 
these systems we calculate that at 
10-8M hydrocortisone, one molecule 
of hormone leads to a binding of 3000 
atoms of calcium. This postulates that 
the hormones act catalytic,ally or that 
they induce conformational changes 
over a large segment of the membrane, 
modifying the binding of many cal- 
cium ions. 

The effect of insulin opposite to 
that of the other hormones provides 
additional evidence for the antagonistic 
action of insulin with glucagon and 
epinephrine. Insulin antagonizes the 
glucagon stimulation of adenylate cy- 
clase in isolated plasma membranes 
of rat liver (8, 10). 

With respect to the model of Ras- 
mussen (5), our studies suggest that 
the hormone effects on calcium binding 
may also be related to calcium trans- 

port through the membrane. We dem- 
onstrated that hormones such as glu- 
cagon, epinephrine, and insulin have 
two independent effects on the mem- 
brane, one being to either activate or 
inhibit adenylate cyclase activity, and 
the other being to stimulate or inhibit 
calcium binding. Although the con- 
centration of hormones that is re- 
quired to influence calcium binding is 
higher than the physiological concen- 
tration (insulin and glucagon have con- 
centrations in portal blood of 10-9 to 
10-10M), the effects may have physio- 
logical significance as the isolated mem- 
branes might have lower biological sen- 
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Inasmuch as the amount of calcium 
bound to the membrane influences the 
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permeability of the membrane, our 
studies also may suggest that certain 
hormones influence membrane permea- 
bility by controlling the amount of 
bound metal ions. Thus, insulin may 
make the cell membrane more permea- 
ble to certain substrates by decreasing 
the amount of bound calcium ions. 

The significance of the ATP effect on 
modifying the calcium binding due to 
hormones is not clear. Whether this is 
related to the chelating property of 
ATP, to ATP altering the membrane 
structure, or indirectly to the cyclic 
AMP formed from ATP is not known. 
In the membrane systems we used, 
cyclic AMP is bound very weakly to 
the membrane and stimulates Ca2+ 
binding only at very high concentra- 
tions (10-3 to 10-5M) of cyclic 
AMP. 
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centrations of norepinephrine (NE) and 
dopamine (DA) in small samples of 
tissue. Accordingly, we have directed 
our attention to the analytical techni- 
que of combined gas chromatography 
(GC) and mass spectrometry (MS) (2). 
Identification of an unknown substance 
by MS usually requires at least 10-6 
mole of a compound to record its frag- 
mentation pattern and establish its 
identity. When the fragmentation pat- 
ern of the compound is known, it is 
then possible to identify as little as 
3 x 10-15 mole of the substance by 
the technique of mass fragmentography 

177 

centrations of norepinephrine (NE) and 
dopamine (DA) in small samples of 
tissue. Accordingly, we have directed 
our attention to the analytical techni- 
que of combined gas chromatography 
(GC) and mass spectrometry (MS) (2). 
Identification of an unknown substance 
by MS usually requires at least 10-6 
mole of a compound to record its frag- 
mentation pattern and establish its 
identity. When the fragmentation pat- 
ern of the compound is known, it is 
then possible to identify as little as 
3 x 10-15 mole of the substance by 
the technique of mass fragmentography 

177 

Norepinephrine and Dopamine: Assay by Mass Fragmentography 
in the Picomole Range 

Abstract. Gas chromatography-mass spectrometry makes possible the simul- 
taneous measurement of norepinephrine and dopamine in concentrations of 0.1- 
milligram tissue samples. Specificity of the assay is confirmed both by the retention 
time of the compound and by the mass to charge ratio of the fragments recorded. 
The sensitivity is of th2 order of 0.5 picomole, and linearity of the response is 
maintained up to at least 200 picomoles. 
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