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involved in hydrocarbon carcinogene- 
sis (9). We report here that polycyclic 
hydrocarbon K-region epoxides cause 
frameshift mutations in bacteria but 
that the hydrocarbons themselves and 
the hydroxylated derivatives are inac- 
tive. K-region epoxides are also muta- 
genic to T2 bacteriophage and to mam- 
malian cells in culture, but the types 
of mutation produced have not been 
characterized (10). 

We have used a set of tester strains 
(11) that have been developed in Sal- 
monella typhimurium for detecting and 
classifying mutagens. We score, by a 
simple back mutation test, the reversion 
from histidine requirement to growth 
on minimal medium. Three of the 
strains (TA1531, TA1532, and TA1534) 
are designed for detecting frameshift 
mutagens of varying specificity. Each 
strain has a frameshift mutation in one 
of the genes of the histidine operon thus 
causing the strain to have a histidine 
requirement. Another strain (TA1530), 
used to detect mutagens that cause base 
pair substitutions, has a base pair 
change in the histidine G gene. All four 
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strains also have a defective excision 
repair system (a deletion through uvrB) 
which makes them much more sensi- 
tive to any mutagen that reacts with 
DNA to form repairable lesions (11). 

The hydrocarbon epoxides and the 
K-region dihydrodiols and phenols were 
prepared as described (12) and were 
added, as solutions in dimethyl sulfoxide 
(spectrophotometric grade, Schwarz/ 
Mann), to the top agar of test plates. 

In initial qualitative experiments, the 
polycyclic hydrocarbons phenanthrene, 
benz[a]anthracene, 7-methylbenz[a]an- 
th,racene, dibenz[a,h]anthracene, 3-me- 
thylcholanthrene, and chrysene and 
their respective K-region epoxides, di- 
hydrodiols, and phenols were tested 
against each of the four tester strains. 
The K-region epoxides of benz[a]an- 
thracene and 7-methylbenz[a]anithra- 
cene were the only compounds that 
caused mutations in the strains designed 
to detect frameshift mutagens; none of 
the compounds was active against strain 
TA1530 that detects base-substitution 
mutagens. 

The hydrocarbon epoxides were sub- 
sequently examined in more detail and 
the results (Table 1) confirm those ob- 
tained in the qualitative tests. Benz[a]- 
anthracene 5,6-oxide was quite active 
against the frameshift tester TA1532, 
and 7-methylbenz[a]anthracene 5,6-ox- 
ide was less so. Again none of the 
epoxides showed mutagenic activity to- 
ward the base substitution tester strain 
TA1530. In all quantitative experi- 
ments proportionality was observed at 
lower concentrations between the 
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5,6-oxide and 7-methylbenz[a]anthra- 
cene 5,6-oxide gave positive results, the 

TA1537 (deep 
rough) rate being 8 and 11 times that of 

the spontaneous rate, respectively. The 
epoxides of phenanthrene, 3-methyl- 
cholanthrene, and dibenz[a,h]anthra- 
cene were not mutagenic. 

Information on both the mutage- 
nicity and the ability of hydrocarbon 
epoxides to cause malignant transfor- 
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Table 1. Revertant colonies (histidine nonrequiring) per petri plate. Each number is the 
result of a count of a separate plate. The boldface numbers are judged to be significantly 
different from the controls. The procedure was that described (11), except that 0.5 ml of a 
dimethyl sulfoxide solution of the potential mutagen was added to the top agar in all plates. 
The plates were incubated for 2 days at 37?C. All solutions were sterile. 

CompoAmvount Revertant colonies (No./plate) from tester strains: Compound added Amount 
(mg) TA1530 TA1531 TA1532 TA1534 

None (control) 23,45,45, 2,4,4,4, 10,10,15, 19,23,29, 
58,68 5,8 15,17,23 29 

Phenanthrene 9,10-oxide 134 65,79 4 16 20 
Benz[a]anthracene 5,6-oxide 34 120 

67 230 
134 49,62 2 275 31 

Benz[a]anthracene 8,9-oxide 134 39 1 12 15 
268 3 3 31 

7-Methylbenz[a]anthracene 67 52 
5,6-oxide 134 54 3 22 50 

196 83 

Dibenz[a,h]anthracene 134 69 1 23,25 11 
5,6-oxide 

3-Methylcholanthrene 134 67 3 12 25 
11,12-oxide 268 9 

Chrysene 5,6-oxide 134 48 6 6 20 
268 3 
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This new strain, TA1537, was found 
to be an excellent tester strain for de- 
tecting frameshift mutagenesis caused 
by dibenz[a,h]anthracene 5,6-oxide. The 
response of strain TA1537 and of the 
parent strain TA1532 to varying doses 
of this carcinogen are compared in Fig. 
1. It is apparent that the deep rough 
mutation has made the bacterial genome 
accessible to the mutagen so that the 
frameshift mutation in the histidine 
operon can now be reverted. With oth- 
er epoxides, strain TA1537 was similar 
in response to the parent strain, except 
that chrysene epoxide showed some ac- 
tivity with TA1537. Methylcholanthrene 
epoxide, which one might have expected 
to be mutagenic, was not active with 
either strain. One possible explanation 
for this is that it is too large to pene- 
trate the remaining lipopolysaccharide. 

We have also obtained indirect evi- 
dence that the epoxides are reacting 
with the bacterial DNA, as well as in- 
tercalating, by comparing their muta- 
genic effect on strains with and with- 
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out excision repair. Mutagens that can 
both intercalate and form a covalent 
bond with DNA, such as the quina- 
crine-half mustard mutagen ICR 191, 
are much more mutagenic in reverting 
a particular histidine mutation in a 
strain without excision repair than in a 
strain with repair, while simple inter- 
calating mutagens such as quinacrine or 
9-aminoacridine are equally effective -on 
the two strains (11). Benz[a]anthracene 
5,6-oxide is negative, at the level of 
sensitivity of our test, in reverting the 
hisC3076 mutation in a uvrB+ strain 
while, as shown in Table 1, it is quite 
effective on the double mutant TA1532 
(that is, hisC3076 uvrB). 

A number of other carcinogenic com- 
pounds have been shown to be power- 
ful frameshift mutagens (11). A series 
of fluorene carcinogens are frameshift 
mutagens and one of the carcinogenic 
metabolic products with a reactive 
group, 2-nitrosofluorene, is one of the 
most potent frameshift mutagens we 
have ever tested (16). The welil-known 
carcinogen 4-nitroquinoline N-oxide is 
also a frameshift mutagen in the Salmo- 
nella tests (17). 

We think it is reasonable to propose 
that polycyclic hydrocarbons are car- 
cinogenic because of the mutagenicity 
of epoxide intermediates formed dur- 
ing metabolism and that the mechanism 
of action may involve intercalation fol- 
lowed by covalent reaction. This pro- 
posed mode of action involving stabili- 
zation of DNA mispairing could ex- 
plain the observations of Fahmy and 
Fahmy (18) that, in Drosophila, poly- 
cyclic hydrocarbons preferentially cause 
bobbed and minute mutations, which 
are large deletions in regions of dupli- 
cated gene clusters for ribosomal RNA 
and transfer RNA. 

Note added in proof: We are in- 
debted to J. R. Roth for raising the 
point that the epoxide induced muta- 
tions could conceivably be due to ex- 
ternal frameshift suppressors, -one class 
of which might be caused by base pair 
substitutions (19). We have ruled out 
this possibility by analyzing 48 epoxide 
induced revertants of TA1532, none of 
which were due to external suppressors. 
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the proboscis during and after the injec- 
tion process. The prey, typically poly- 
chaete annelids but other mollusks or 
fishes in some cases, is partially para- 
lyzed by the venom and swallowed 
whole (1). 

Although the general nature of the 
Conus radula tooth and something of 
the diversity of tooth form in the genus 
have been known for many years (2, 3), 
earlier studies have failed to elucidate 
the fundamental structural pattern of 
the tooth and the functional significance 
of its component features. This is due 
largely to the difficulty of determining 
the three-dimensional relationships of 
the internal and external parts of the 
enrolled, tubular, translucent, asymmet- 
rical tooth by light microscopy (2, 3). 
By emphasizing surface details of teeth 
made opaque in preparation, and by af- 
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Radula Tooth Structure of the Gastropod Conus imperialis 
Elucidated by Scanning Electron Microscopy 

Abstract. Scanning electron microscopy of the hollow, harpoon-like radula 
tooth of the toxoglossan gastropod Conus has elucidated the structure and rela- 
tionships of its component parts: apex, cutting edge, barbs, serration, adapical 
and basal openings of the lumen, external and internal folds of the shaft, and 
base. The functional roles of these components in prey capture are proposed. 
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