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Measurement is employed in two 
quite different ways in scientific re- 
search. Usually, the investigator search- 
es for quantitative laws, relying on pre- 
viously established physical measure- 
ment. This is what chemists do, for 
example, in weighing various products 
of reactions. Such weight measurements 
led ultimately to the periodic table and 
to the chemical theories suggested by it. 
Similarly, physiologists and psycholo- 
gists measure variables -such as pupil 
diameter in order to discover laws of 
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functioning of the visual system and the 
brain. 

The second use for measurement is 
to represent an empirical structure by 
an analogous or homomorphic numeri- 
cal structure. It is this second use that 
leads to construction of measurement 
scales de novo. For example, the weight 
measure was originally introduced be- 
cause the properties of numerical 
weights gave a convenient representa- 
tion to qualitative empirical observa- 
tions. Objects can be compared quali- 
tatively in a pan balance and the 
resulting empirical ordering is repre- 
sented by the numerical ordering of the 
scale values (weights) assigned to them. 
Similarly, putting two objects together 
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is represented by adding their weigh,ts. 
A set of empirical relations that leaJds to 
construction of measurement scales in 
this fashion is called a measurement 
structure. 

In physics, measurement structures 
are very common. In most other sci- 
ences, previous physical measurement is 
used to generate new empirical rela- 
tions. The laws satisfied by these latter 
relations lead to formulation of theo- 
ries, but they do not lead to introduc- 
tion of new measurement, that is, the 
empirical relations do not constitute 
measurement structures, even though 
they were generated by use of previous- 
ly established physical measures. In 
psychology, however, ,the program of 
introducing new numerical functions, 
to measure such variables -as intelli- 
gence, utility, or sensation magnitude, 
has long been attractive. In some cases, 
appropriate qualitative psychological 
laws do lead to such new, nonphysical 
measurement. 

In this article I review some kinds of 
lawful structures that lead to measure- 
ment, briefly first in physics, then more 
thoroughly in psychology. I conclude 
by emphasizing that many areas of 
psychology should and do operate in the 
same way as biology or chemistry, so 
that previously established physical 
measures are used to discover new psy- 
chological theory, but not to establish 
new measurement scales. In still other 
areas, psychological measurement struc- 
tures seem quite promising. 

1427 

is represented by adding their weigh,ts. 
A set of empirical relations that leaJds to 
construction of measurement scales in 
this fashion is called a measurement 
structure. 

In physics, measurement structures 
are very common. In most other sci- 
ences, previous physical measurement is 
used to generate new empirical rela- 
tions. The laws satisfied by these latter 
relations lead to formulation of theo- 
ries, but they do not lead to introduc- 
tion of new measurement, that is, the 
empirical relations do not constitute 
measurement structures, even though 
they were generated by use of previous- 
ly established physical measures. In 
psychology, however, ,the program of 
introducing new numerical functions, 
to measure such variables -as intelli- 
gence, utility, or sensation magnitude, 
has long been attractive. In some cases, 
appropriate qualitative psychological 
laws do lead to such new, nonphysical 
measurement. 

In this article I review some kinds of 
lawful structures that lead to measure- 
ment, briefly first in physics, then more 
thoroughly in psychology. I conclude 
by emphasizing that many areas of 
psychology should and do operate in the 
same way as biology or chemistry, so 
that previously established physical 
measures are used to discover new psy- 
chological theory, but not to establish 
new measurement scales. In still other 
areas, psychological measurement struc- 
tures seem quite promising. 

1427 



Measurement Structures in Physics 

In some cases, physical measurement 
is based on quantitative laws and their 
importance for measurement is gener- 
ally recognized. For example, interval- 
scale measurement of temperature is 
based on the law of linear expansion of 
a thermometric substance; while mea- 
surement of temperature ratios (Kelvin 
scale) depends on the third law of 
thermodynamics. Another sort of ex- 
ample is provided by measurement of 
density, which depends on the fact that 
the ratio of the mass to the volume of 
a homogeneous substance is indepen- 
dent of the volume. 

The measurement of physical quanti- 
ties such as length, mass, and duration 
is logically prior to the formulation of 
the quantitative laws of physics. Never- 
theless, philosophers and physicists in- 
vestigating the foundations of physics 
have long understood that even these 
so-called fundamental measurements 
are based on certain qualitative physi- 
cal laws. For example, suppose that 
two straight rods, a and b, are laid side 
by side (Fig. 1) and that b extends be- 
yond a at both ends (that is, b is longer 
than a, denoted b > a). Similarly, sup- 
pose that b' > a'. If now b and b' are 
concatenated by laying them end to end, 
and if, alongside them, a and a' are 
concatenated similarly, then the com- 
bination of b and b' is longer than the 
combination of a and a'. Denoting the 
operation of end-to-end concatenation 
by *, we have the following simple law: 

If b > a and b' > a', 
thenb * b' > a a' (1) 

In the fundamental measurement of 
length, two qualitative (that is, nonnu- 
merical) empirical relations are used, 
the comparison relation > and the con- 
catenation operation *. These empirical 
relations satisfy various qualitative laws, 
such as that shown in Eq. 1. It can be 
proved (1) that the qualitative laws 
satisfied by > and * imply that a real- 
valued function, or length measure, 
can be constructed, such that larger 
function values correspond to longer 
rods and such that the length of a * b 
is the sum of the lengths of a and b. 

Fundamental measurement of mass 
and duration also requires qualitative 
comparison relations and concatena- 
tion operations, and these empirical re- 
lations satisfy the same abstract laws, 
like the one in Eq. 1, that hold in 
the case of length. From a formal 
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standpoint, the procedures for assign- 
ing numbers as measures of objects 
are identical for length, mass, and du- 
ration: one concatenates many identi- 
cal objects (for example, centimeter- 
lengths, gram-masses, or pendulum 
periods) and counts how many such 
identical objects are needed to match 
approximately the object to be mea- 
sured. Such measurement, based on 
concatenation, is called extensive mea- 
surement (1). (Some of the most in- 
teresting lengths, masses, and times are 
those occurring on cosmic or molecular 
scales, and these, of course, are mea- 
sured indirectly by using the much more 
elaborate quantitative laws of physics 
to relate them to quantities on a labora- 
tory scale, such as the length of a pho- 
tographic track or the arc length along 
a meter scale.) 

Measurement Structures in 

Social Science 

Extensive measurement has had few 
applications to fundamental measure- 
ment of psychological variables, be- 
cause no concatenation operations are 
known for variables such as loudness, 
utility, intelligence, thirst, or anxiety, 
which satisfy appropriate qualitative 
laws. In particular, Eq. 1 can be shown 
to fail for many natural concatenation 
operations. Comparison relations which 
resemble > abound, but in the absence 
of additional structure, such as that 
provided by *, they lead only to ordinal 
measurement. However, concatenation 
is not the only possible source of addi- 
tional structure; various other kinds of 
structure can combine with a compari- 
son relation and, if appropriate quali- 
tative laws are satisfied, interval- or 
ratio-scale fundamental measurement 
results. 

The possibility that nonextensive 
structures may lead to satisfactory 
measurement was first widely recog- 
nized after the publication by von Neu- 
mann and Morgenstern (2) of a set of 
qualitative axioms leading to interval- 
scale measurement of utility. They as- 
sumed a comparison relation >, where 
a> b is interpreted as "a is preferred 
to b," and a family of combining op- 
erations for options a, b: for any proba- 
bility p, 0 < p < 1, and any a, b, they 
assumed that a combined option [pa, 
(1 - p)b] exists, where this is interpret- 
ed as a lottery in which option a (which 
may itself be a lottery) is obtained with 

probability p and option b with proba- 
bility 1 - p. Their axioms for this struc- 
ture constitute a set of qualitative laws 
for "rational" decisions among risky 
options. These qualitative laws imply 
the existence of a real-valued (utility) 
function u over the set of all options, 
such that a > b if and only if u(a) > 
u(b) and 

u[pa, (1 - p)b] = pu(a) + (1 - p)u(b) 

In recent years, a great many non- 
extensive structures, with corresponding 
systems ,of qualitative laws leading to 
interval- or ratio-scale measurement, 
have been studied mathematically (3-5). 
Most of these structures (including von 
Neumann and Morgenstern's) reduce to, 
or are closely related to, one particular 
class of structures, in which there is a 
comparison relation, >, and the objects 
compared can be regarded as elements 
of a Cartesian product. That is, the or- 
dinal position of any object, with re- 
spect to >, depends on the levels of 
two or more independently controllable 
(or at least identifiable) factors. Mea- 
surement based on such structures re- 
quires the simultaneous development of 
scales for the ordered variable and for 
the contributions of each factor, and 
so it has been called simultaneous con- 
joint measurement (6); the empirical 
relational structures may be termed con- 
joint structures. 

Qualitative Laws in Conjoint 
Structures: Independence 

To illustrate a conjoint structure, let 
us consider the psychological variable 
"response strength" and its dependence 
on three independently controllable fac- 
tors, amount of food deprivation (a), 
quality of food reward (b), and degree 
of previous experience (c). To be even 
more concrete, consider rats traversing 
a long straight alley. Assume that the 
response strengths of the rats are or- 
dered (inversely) by observing the total 
times required to traverse the alley (7). 
Deprivation (a) may be indexed by 
percentage of normal body weight, re- 
ward (b) by concentration of sucrose 
solution offered at the end of the alley, 
and previous experience (c) by number 
of previous runs through the alley (say, 
with no deprivation but with sucrose 
available). The word "indexed" is used 
because, for purposes of conjoint mea- 
surement, only a nominal scale on each 
factor is required a priori; in the pres- 
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Fig. 1. Illustration of qualitative law un- 
derlying additive measurement of length. 
If rod b is longer than rod a and b' is 
longer than a', then the end-to-end con- 
catenation of b and b' is longer than the 
concatenation of a and a'. 

ent example, the effect of reduction in 
body weight on running speed might 
well be nonmonotonic. 

The simplest types of qualitative 
laws that can be tested in a conjoint 
structure are independence laws. To 
illustrate, suppose that four groups of 
rats are tested in conditions abc, a'b'c, 
abc', and a'b'c', shown in Fig. 2. As- 
sume that a represents more deprivation 
than a' (in a range where increasing 
deprivation increases running speed), 
but b represents less reward than b'. 
Therefore there will be doubt, a priori, 
as to whether treatment combination 
ab or a'b' produces more response 
strength. Let c, c' be any two different 
levels of the experience factor. Let the 
four experimental groups be matched 
by taking sets of four littermates and 
randomly assigning them to distinct 
groups. Now suppose the following re- 
sults are obtained: most of the rats in 
group abc traverse the alley in less time 
than do their littermates in group 
a'b'c; and most in group abc' are faster 
than their littermates in group a'b'c'. 
We conclude that the combination ab 
produces more response strength than 
a'b', independent of the choice of a 
fixed level of experience factor, c or c'. 
If the result were replicated for enough 
different levels of a, b, c, a', b', and c', 
one would conclude that the ordering 
of combined deprivation-reward effects, 
at constant experience, is independent 
of the level of experience. This qualita- 
tive law is formally expressed as fol- 
lows: 

abc > a'b'c if and 
only if abc' > a'b'c' (2) 

The experimental situation of com- 
paring concatenations of rods (Fig. 1) 
yields the first qualitative law (see Eq. 
1), which is the key to construction of 
an additive length measure. Likewise, 
the second qualitative law (Eq. 2), 
tested in conjoint structures by the ex- 
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perimental design of Fig. 2, is the key 
to additive (or multiplicative) conjoint 
measurement. In fact, if the second law 
is valid for a three-factor conjoint struc- 
ture, and if the two symmetric inde- 
pendence laws hold, by which the order- 
ing of ac, a'c' combinations is inde- 
pendent of the fixed level of b, and the 
ordering of bc, b'c' combinations is in- 
dependent of the fixed level of a, then, 
with the addition of one or two techni- 
cal assumptions (for example, continu- 
ity), one can prove (8) that there exists 
a monotonic transformation of the ordi- 
nal dependent variable that decomposes 
into the sum of the three scales, one for 
the contribution of each factor. This 
monotone transformation is unique up 
to linear transformations (changes of 
origin and units); so we obtain interval- 
scale measurement, over the objects 
compared, and over each factor as well. 
Sometimes the exponentials of these 
various scales are used, resulting in a 
multiplicative combination of the factor 
effects. 

There are other kinds of qualitative 
laws for conjoint structures," corre- 
sponding to more complicated rules of 
combination of the factor effects. But 
independence laws are so important 
that it pays to dwell on them a bit 
more, and to present a few somewhat 
disguised examples. 

First, note that there are really two 
sorts of independence laws: single-factor 
independence, in which the ordering of 
the effects of one factor is the same, no 
matter what fixed levels are chosen in 
all other factors; and joint-factor inde- 
pendence, in which the ordering of the 
joint effects of two or more factors is 
independent of the fixed levels of the 
remaining factors. The second law illus- 
trated joint-factor independence: the or- 
dering of the factor combinations ab, 
a'b' was considered, for differen.t levels 
of the remaining factor. Single-factor 
independence is quite a weak condition: 
it means only that each factor can be 
ordered in such a way as to contribute 
monotonically to the overall effect. In 
other words, scales can be constructed 
such that the rule of combination of the 
factors is monotone in each variable, 
but no other constraint on the rule is 
imposed. Often the orderings on single 
factors are given in advance, by the 
very operations that define the factors. 
For example, suppose we compare the 
momenta of objects that move in a fixed 
direction. The two relevant factors are 
mass and speed. But the very operation 

Experience= c Experience = c' 

Aa abc la abc' 
Deprivation a'b' 

'a __ b'cb a ab' c 
b b' b b' 

Reward Reward 

Fig. 2. Illustration of experimental design 
to test whether the ordering of the joint 
effect of deprivation and reward is inde- 
pendent of experience. Independence holds 
when the ordering of ab relative to a'b' is 
the same at c as at c'. 

that defines a nominal scale of mass 
also defines an ordering, consistent with 
the ordering obtained by observing mo- 
menta, holding speed fixed. 

One striking class of violations of 
single-factor independence is suggestive 
of multiplicative combination of fac- 
tors, with positive, zero, and negative 
multipliers. A reversal in the sign of a 
multiplier reverses totally the order- 
ing of the products. A zero multi- 
plier produces a degenerate ordering. 
For an example, consider an experiment 
in which subjects rate the moral conno- 
tation of adverb-adjective combinations, 
such as "slightly evil." Not surprisingly, 
"slightly evil" is rated higher than "very 
evil" but "slightly pleasant" is rated 
lower than "very pleasant" (9). This 
suggests that scale values of adjectives 
are both positive and negative and mul- 
tiply the adverb scale values. When the 
only violations of independence involve 
total reversals of ordering or degener- 
ate ordering, we speak of sign depen- 
dence; this generalizes the notion of in- 
dependence (10, 11). 

In contrast to single-factor indepen- 
dence, joint-factor independence is a 
very strong condition. As remarked 
above, when all ,possible joint-factor in- 
dependence laws hold, we obtain addi- 
tive measurement. Note that in the two- 
factor case, the only possible indepen- 
dence laws are single4factor ones; so 
other kinds of laws, of a kind men- 
tioned below, must be studied to deter- 
mine whether additive measurement is 
possible. 

Example of Independence Laws 

The first example is a fairly trans- 
parent one: the theory of consumer 
choice, in economics. The objects com- 
pared are commodity vectors (xl,*.*, 
xn), where xi is the amount of the ith 
commodity. The comparison relation is 
defined by the consumer's choice or 
preference between competing com- 
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modity vectors available to him. Single- 
factor independence merely means that 
amounts of each commodity can be 
ordered so that it is a good: values 
higher in the ordering are always pre- 
ferred to lower ones, the amounts of 
other commodities being held constant. 
Joint-factor independence means lack 
of complementarity between commod- 
ities (12). Suppose, for example, that 
the second law (Eq. 2) is violated, with 
abc > a'b'c and a'b'c' > abc'. If a is 
ordered above a', b' above b, and 
c above c' (by single-factor indepen- 
dence) then the first and third colmmod- 
ities are complementary, since with 
more of the third, the consumer also 
wants more of the first, and is willing 
to sacrifice some of the second com- 
modity for that end. 

The second example concerns a re- 
formulation of the von Neumann and 
Morgenstern utility theory in terms of 
conjoint structures (13, 14). A risky 
operation can be regarded as a vector 
(xl,, x,) where the outcome x, is 
obtained if event Ei occurs, and E1, "* *, 
E, is a set of events, exactly one of 
which will occur. Joint-factor indepen- 
dence now states that if the result xi is 
the same for two risky options, then 
the value of x--good or bad-is dis- 
regarded in choosing between the op- 
tions; the decision-maker focuses on the 
events Ej, j = i and chooses as though 
one of those events were bound to 
occur. 

This principle is regarded as a 
normative law of rational decision-mak- 
ing, and is often known as the extended 
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sure-thing principle. It was emphasized 
by Savage (13). As a descriptive law of 
human choice, it often fails (15), but 
there is little doubt about its value as 
a normative principle, and it is there- 
fore valuable to teach people to act in 
accordance with it. For example, con- 
tract-bridge teachers tell students that 
in choosing between two plays, they 
should treat as irrelevant distributions 
of opponents' cards for which the two 
plays will have the same outcome, and 
attend only to the consequences for 
card distributions where the two plays 
may have different outcomes. 

A third example arises in testing for 
linearity of an- input-output transforma- 
tion, where the input may be measur- 
able only on a nominal scale and the out- 
put only on an ordinal scale (16). For 
an example, the input x(r) could be 
light intensity, as a function of time r, 
and the output y(t) could be neural- 
firing rate of some visual-system unit, 
as a function of time t. Usually, lin- 
earity is defined by the superposition 
law: if x'(r) = x(T) + X(r), then the 
corresponding output functions satisfy 
y'(t) = y(t) + y((t). If, however, the in- 
put is subject to an arbitrary distortion 
and the output to a monotone distor- 
tion, we can define linearity by a gen- 
eralized superposition law. Let xl and 
x2 be two input functions that coincide 
for some values of r (see Fig. 3, where 
xI, x2 are periodic inputs that coincide 
in the second half, designated -A, of 
each period). Let xl' and x2' be mod- 
ifications of xl and x2, where only the 
common part is modified (see lower 

Fig. 3. Inputs x1 and x2 coincide in the 
second half of each period (-A). Inputs 
xl', x2' are formed from xi, xS by adding 
a common input that is zero except in -A. 
According to the generalized superposition 
law, the output ordering of xl and x2 is the 
same as that of xl' and x2'. 

half of Fig. 3). The generalized super- 
position law affirms that for any t, the 
outputs y, and Y2 are ordered in the 
same way as the modified outputs yl' 
and Y2'; that is, 

yl'(t) > y2'(t) if and only if 

yi(t) > y2(t) (3) 

This generalizes the usual superposition 
principle, because modifying xl and x2 
to obtain xl' and x2' is like adding a 
"difference input" x to both x, and x2, 
where x is restricted to being zero ex- 
cept for values of T where the original 
inputs coincide. 

To understand why the generalized 
superposition law is an instance of 
joint-factor independence, note that 
each r defines a factor. Input function 
x is a vector, with factor-level x(T) on 
the r factor. The ordering of outputs 
yl(t) and y2_(t) depends on the joint 
effect of all factor-levels xl(r) and x2(r), 
where these do not coincide. The order- 
ing of yl'(t) and y2A(t) depends on 
exactly the same joint effects. Hence 
Eq. 3 follows from joint indepen- 
dence. 

This formulation leads, for example, 
to methods for testing linearity of neu- 
ral processing, where neural-firing rate 
is taken as only an ordinal measure of 
the output of a hypothesized linear 
process. 

For a final example, I turn to the 
psychological literature on impression 
formation (17) and multidimensional 
psychophysics (18). In general, several 
different factors may contribute to a 
percept or an impression. The example 
of adjective and adverb factors contrib- 
uting to the impression produced by 
phrases such as "slightly pleasant" was 
cited above; other examples include 
impressions of job candidates produced 
by test scores for intelligence and mo- 
tivation, and perception of size as a 
function of visual angle and perceived 
distance. In each of these cases, one 
has a fairly obvious conjoint structure, 
and independence laws may be exam- 
ined. 

Slightly more disguised is the appli- 
cation of qualitative independence laws 
to multidimensional geometric models 
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Fig. 4. Eight faces varying on three binary 
attributes, used to test whether the contri- 
butions of the differences on the three 
attributes contribute additively to overall 
dissimilarity. 

of proximity or dissimilarity. In these 
models (18), one tries to represent stim- 
uli by vectors x = (xl, , x,), y = 
(Yi, ' , Yn,) for example, in such a way 
that stimulus dissimilarities vary mono- 
tonically with (Euclidean) distance, that 
is, with 

n 

d(x,y)= [ 2 (-y) 

This model postulates, among other 
things, that an impression of dissimi- 
larity varies monotonically with an ad- 
ditive combination of contributions 
from the differences along each of sev- 
eral dimensions. This postulate can be 
studied in isolation, that is, in the con- 
text of the much more general model 

n 

d(x,y) =F[ E i (xi., yi) (4) 

where F is an arbitrary monotone func- 
tion and each (i is a function of two 
(nominal-scale) variables xi, yi. This, 
and other generalizations of the Eucli- 
dean model have been studied by con- 
joint-measurement methods (19). Equa- 
tion 4 leads immediately to joint-factor 
independence laws: if the dissimilarity 
produced by some combination of dif- 
ferences on n - 1 dimensions exceeds 
that produced by some other combina- 
tion on those same dimensions (the dif- 
ference on the nth dimension remaining 
constant), then that same ordering 
holds, as the constant difference on the 
nth dimension is varied. 

In a study of dissimilarities of sche- 
matic faces, by Tversky and Krantz 
(20), the independence laws were well 
supported. The stimuli, shown in Fig. 
4, were made up with two levels of 
each of three attributes: long versus 
wide face, empty versus filled eyes, 
straight versus curved mouth. Each pair 
of faces could have either a large differ- 
ence or zero difference, on each of the 
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three attributes. Figure 5 exhibits a 
typical test of joint-factor indepen- 
dence. The top two pairs of faces com- 
pare the joint effect of large mouth and 
zero eye difference to the joint effect of 
zero mouth and large eye difference, at 
a fixed (zero) level of shape difference; 
the bottom two pairs compare the same 
two joint effects, at a different fixed 
level of shape difference. 

Many other examples of conjoint 
structures and independence laws could 
be cited; but these four, together with 
the example for strength of response in 
the preceding section, may give some- 
thing of a feeling for the variety of dif- 
ferent situations subsumed under the 
same formal structure. 

Other Qualitative Laws in 

Conjoint Structures 

Qualitative laws more complicated 
than independence laws have been used 
in the analysis of two-factor conjoint 
structures (6), where independence does 
not suffice for additive measurement, 
and in the analysis of nonadditive com- 
bination rules for conjoint structures 
with three or more factors (11). Here 
I present a single example with a very 
common nonadditive rule, in which the 
effects of two variables are added and 
then the sum is multiplied by the effect 
of the third variable. That is, we have 
scales , ?2, p3, such that the scale 

?(a,b,c) [=i(a)+ - 2(b)](p(c) 

preserves the ordering of compar- 
isons >. In other words, 

abc > a'b'c' if and only if 

[wi(a) ?+ 2(b)]1p3(c) 
> [pi (a') + ,2(b')]q(c') (5) 

Note that this hypothesis implies one 
of the three possible joint-factor inde- 
pendence laws: if we assume that the 
(P values are all positive, then the or- 
dering of joint effects of the a and b 
factors is independent of the fixed level 
in the c factor (Eq. 2). However, it is 
easy to show that the other two joint- 
factor independence laws fail. 

Consider the experimental design 
shown in Fig. 6, where there are eight 
conditions, a 2 X 2 factorial design at 
level c of the third factor and another 
2 X 2 factorial at level c'. Suppose that 
cells 1, 2, 3, 4 in the first 2 x 2 design 
are, respectively, compared with celils 
1', 2', 3', 4' in the second one, with the 
results 1 > 1', 2 > 2', but 3' > 3 and 

@0 @0 @0 
K> 

00 

if and only if 

Fig. 5. A test of joint-factor independence 
for the stimuli of Fig. 3. The comparison 
of the joint effect of (large mouth differ- 
ence, zero eye difference) with the joint 
effect of (zero mouth difference, large eye 
difference) should yield the same results, 
regardless of the kind of shape difference 
(zero or large) that is present. 

4' > 4. If we use Eq. 5 these compar- 
isons translate into the following in- 
equalities in o values: 

[ p(a) + (2(b)](pa(c) > 
[i(a") +q-2(b")]3a(c') 

[pi(a') + >2(b')](c) > 
[?l(a"') 4- ?..(b"')]?W(c') 

[qp(a"') + ?P2(b")]3(c') > 
[pi(a') +9-2(b)]8p(c) 

[p,(a") + p2(b"')] 3(c') > 
[pi(a) 4- ?2( b')]03(c) 

By adding the first two inequalities we 
obtain 

[qi(a) + p,(b) + (,p(a') + ?2(b')Ip3(c) > 
[qt(a") + ?02(b") +- 1i(a"') 

+ P2 (b')]3(c')] 

But by adding the second pair of in- 
equalities we produce the contradictory 
inequality. This shows that Eq. 5 im- 
plies a new qualitative law: if 1 > 1' 
and 2 > 2', then 3' > 3 and 4' > 4 can- 
not both hold. A similar argument 
would apply if we started with 1 > 2' 
and 2 > 1', or even with 1 > 3', 2 > 4'. 
Thus we have the following generaliza- 
tion: 

If one diagonal of a 2 X 2 fac- 
torial design, at a fixed level of 
the third factor, dominates one 
diagonal of another 2 X 2 facto- 
rial at a different fixed level of 
the third factor, then the other 
diagonals cannot have reversed 
dominance. (6) 

The laws shown in Eqs. 2 and 6 are 
both necessary if scale values satisfying 
Eq. 5 are to be constructed; however, 
they are not sufficient to guarantee that 
such scale values exist. A more com- 
plete discussion of these kinds of laws 
can be found in (11) and (5). For an 
empirical example in which Eq. 5 seems 
to hold, and where Eqs. 2 and 6 were 
tested to infer this, see Coombs and 
Huang (21). They studied perceived 
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riskiness of games consisting of multiple 
plays of even-chance two-outcome gam- 
bles; the additive factors were the regret 
or disparity between the two outcomes 
(a) and the expected value per single 
play (b); the multiplicative factor (c) 
was the number of plays per game. 

Direct Estimates of Sensation 

One of the most impressive bodies of 
experimental results in psychology has 
been amassed by S. S. Stevens' tech- 
nique, which requires observers to as- 
sign numbers "in proportion to" their 
sensations. Particularly important is the 
consistent prediction of cross-modality 
matches (22), cross-context matches 
(23), and heterochromatic matches (23, 
24) from such numerical assignments. 

What has not been done is to set 
forth explicitly the empirical relational 
structure generated by these experi- 
ments and the qualitative laws that lead 
to measurement. Stevens' claim (25) 
that the sone scale of loudness is a 
prime example of ratio-scale measure- 
ment in psychology seems to be based 
on a mere pun: the instruction to assign 
numbers "in proportion" to sensation. 

To justify Stevens' claim that his 
"proportion" instructions lead to a ratio 
scale, note that the requirement to as- 
sign numbers "in proportion" demands 
that the observer judge the presented 
stimulus relative to previous stimuli. 
One may hypothesize that the observer 
orders pairs (a,b) of stimuli with respect 
to some perceived quality of such pairs. 
The perceived quality may be called 
the sensation "ratio" of the pair. The 
quotation marks indicate that this qual- 
ity is not actually a ratio, rather, it is 
a perceptual attribute of stimulus pairs 
within a single modality. Thus, the as- 
sumed relational structure is simply a 
comparison relation > over pairs of 
stimuli: 

(a,b) > (c,d) if the sensation 
"ratio" produced by a relative 
to b is at least as great as the 
sensation "ratio" produced by c 
relative to d. 

This hypothesis leads, therefore, to 
a two-factor conjoint structure, in 
which the first factor is the stimulus 
that is judged and the second one is the 
standard relative to which it is judged. 
This formulation is not too different 
from others that have been given in 
connection with direct estimation of 
sensation (26), and it was, in essence, 
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suggested by Stevens (27), who rejected 
it on the grounds that it leads only to 
a logarithmic interval scale, rather than 
a ratio scale, for sensation measurement. 

The conjoint structure for a single 
sensory modality can be extended, how- 
ever, to include cross-modality com- 
parisons of sensation ratios, for exam- 
ple, (a,b)> (a',b') where a,b come from 
one modality and a',b' from another. 
Elsewhere (28), I have shown that this 
extended structure is capable of sub- 
suming Stevens' major results, including 
the results of numerical estimation and 
cross-modality experiments, provided 
that appropriate qualitative laws are as- 
sumed. The key qualitative law is the 
following: 

If (a,b) > (a',b') 
and (b,c) > (b',c'), 

then (a,c) > (a',c') (7) 

[The law shown in Eq. 7, was discussed 
by Holder in his 1901 analysis of in- 
terval measurement on a line (1).] From 
this law, and some technical assump- 
tions, it can be shown that a measure- 
ment scale exists for each modality, 
such that the order of ratios of scale 
values predicts within- and cross-modal- 
ity comparisons of sensation "ratios." 
With an additional law, one can prove 
that the measurement scales are correct- 
ly given by numerical estimation. More- 
over, the scales are indeed ratio scales 
(unique except for choice of units), 
except for the possibility of transform- 
ing all of them by a fixed power trans- 
formation (in effect, changing the nu- 
merical response scale by raising it to 
a power). 

The theory just sketched provides an 
example of the way in which a suffici- 
ently rich body of empirical results can 
sometimes be recast as a measurement 
structure, satisfying appropriate qual- 
itative laws. Once this has been done, 
some of the focus of attention changes. 
The empirical question, "What is the 
form of the numerical estimation func- 
tion as stimulus energy varies?" loses 
some importance; instead, we ask what 
is the nature of the underlying quality 
of pairs that is judged, and what is the 
relation of such a perceived quality of 
pairs to sensory processing. 

Measurement Structures in 

Color Perception 

Color perception provides the best 
examples of measurement structures in 
psychology. In classical trichromatic 

color measurement, as well as in the 
empirical observations underlying both 
the Young-Helmholtz theory of color 
blindness and the Hurvich-Jameson the- 
ory of opponent colors, the structures 
that arise are not conjoint structures at 
all, but a quite different sort, which I 
term Grassmann structures. Other as- 
pects of color perception give rise to a 
variety of conjoint structures: the at- 
tempt to represent color discrimination 
or similarity in uniform color spaces 
requires multidimensional scaling struc- 
tures; the scaling of hue and brightness 
requires sensation "ratio" structures; 
the relation of saturation to hue and 
whiteness exemplifies the (oPI + (2)o3 
structure discussed above; and there are 
yet other examples. Furthermore, color 
perception provides a kind of micro- 
cosm of psychology. The empirical re- 
lational structure of color mixture and 
color matching, with its qualitative laws 
(Grassmann's laws) leading to trichro- 
matic color measurement, is extremely 
well established; modern measurement 
analysis just formalizes what Thomas 
Young knew. The Grassmann struc- 
tures involved in color blindness and 
opponent-color perception are very nat- 
ural and probably correct, but more de- 
tailed investigation of their qualitative 
laws is still needed. In the area of color 
discrimination and color similarity, there 
is a great mass of empirical relations, 
but the appropriateness of measure- 
ment analysis is quite uncertain. The 
idea of representing saturation compari- 
sons by a three-factor composition 
rule, [red-or-green + yellow-or-blue] X 
[white-or-black]-1, is a bit speculative; 
we do not really know what the best 
way of making saturation comparisons 
is, nor what qualitative laws to expect. 
Finally, areas such as color memory or 
esthetics are still preparadigm: there 
are some good studies, but we have no 
clear idea what sorts of empirical struc- 
tures may eventually appear, nor wheth- 
er they will be measurement structures. 

I will now give a brief sketch of the 
(Grassmann) structures that arise in 
color matching and in opponent-colors 
theory. 

Trichromatic color measurement is 
based on metameric matching of lights 
and on two operations on lights, addi- 
tive color mixture and scalar multiplica- 
tion. A light is identified by a curve giv- 
ing its energy density as a function of 
wavelength, for wavelengths in the vis- 
ible electromagnetic spectrum. Two 
lights a,b are metameric (denoted a-- 
b) if they look exactly alike in color 
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(hue, saturation, and brightness). For 
example, a light with a broad spectrum, 
such as the output of a tungsten-fila- 
ment lamp, can be matched exactly by 
a light with energy concentrated at just 
two wavelengths (for example, 470 and 
580 mm). Two lights a,b can be mixed 
to form a 0 b, the light that has at each 
wavelength the sum of the energies of 
a and b; and a light a can have its 
energy at each wavelength multiplied 
by a fixed nonnegative constant t, to 
form t * a. The empirical relational 
structure consists of the set of lights and 
the relations , D, and *; = depends 
on a human observer, while 0D and * 
depend only on physics. 

The qualitative laws that involve 
only 0 and * are physical laws, for 
example, t * (a E b) = (t * a) E .(t * b). 
The qualitative laws that also involve 
were first stated by Grassmann (29). 
They can be reformulated as follows: 

M is transitive, reflexive, 
and symmetric (8) 

a b if and only if a D c b @ c; 
and if a b, thent a = t * b (9) 

For any four lights, a positive 
linear combination of two of 
them or three of them matches 
a positive linear combination of 
the remaining two or one, re- 
spectively; and there are three 
lights such that no positive linear 
combination of any two of them 
matches the remaining one. (10) 

In Eq. 10 we define a positive linear 
combination of lights, al, , am to be 
an additive mixture of scalar multiples, 
(tQ * al) ... (tm * am), where ti - 0 
and at least one ti is strictly positive. 

A structure that satisfies both Eqs. 8 
and 9 may be termed a Grassmann 
structure; if Eq. 10 also holds, it is a 
trichromatic Grassmann structure. 

The law shown by Eq. 8 is usually 
considered to be a test of the adequacy 
of the empirical operations defining -; 
the law shown by Eq. 9 is interpreted 
as implying that = is determined at the 
level of retinal cones, before any non- 
linearities in the sensory transduction 
process; and the law shown by Eq. 10, 
trichromacy, restricts the number of 
independent channels, at the level of the 
cones and above, to three. For a dis- 
cussion of those empirical laws, see 
Brindley (30). 

The measurement consequences of 
these laws are embodied in the standard 
systems of color measurement (31). 
There exists a vector-valued measure, 
=p ='(P1I, 02, 03), defined over lights, such 
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that metameric lights correspond to Their first main empirical result (33) 
equal vectors [a b if and only if 
(p(a) = p(b)] and additive mixture and 
scalar multiplication of lights corre- 
spond to ordinary addition of vectors 
and multiplication by scalars. The mea- 
sure (p is determined only up to arbi- 
trary changes of linear coordinates, that 
is, it can be transformed by an arbi- 
trary 3 X 3 matrix with a nonzero deter- 
minant. 

Much of color theory can be re- 
garded as attempting to consider addi- 
tional empirical relations, besides -, 
0, *, and on the basis of the qualitative 
laws satisfied by such additional em- 
pirical structure, to find a more tightly 
defined coordinate system that gives a 
simple representation of all the em- 
pirical relations. For example, the em- 
pirical structures defined by color-dis- 
criminability data have been used for 
such purposes since Helmholtz (32). 
Such use of color discriminability has 
only been partially successful, mainly 
because of our lack of knowledge of the 
qvalitative laws by which small differ- 
ences on different dimensions or chan- 
nels combine to determine overall dis- 
criminability. 

Differences among color theories lie 
mainly in different choices of which 
additional empirical relations should be 
given first consideration. The Hurvich- 
Jameson opponent-colors theory em- 
phasizes observations that certain lights, 
viewed under achromatic adaptation 
and surround conditions, appear neutral 
with respect to one of the main hue 
attributes. For example, some lights ap- 
pear reddish, others greenish, but some 
are neither reddish nor greenish. This 
last neutral set includes the "unique" 
yellows, the "unique" blues, and the 
achromatic lights. Denote it by C1. 
Likewise, there is a set C2 of unique 
reds-greens, which are neutral on the 
yellow-blue attribute. Lights that are in 
both C1 and C2 are achromatic. 

Jameson and Hurvich measured the 
"redness" of a light by the intensity of 
a standard green needed to just cancel 
out the red, that is, such that the mix- 
ture is in C1. That is, two lights are 
equally red (or green) if admixture of 
the same third light brings them to neu- 
trality. This defines an equivalence re- 
lation -1 on lights: 

a =i b if and only if for some c, 
both a 0 c and b ( c are in C, 

A yellowness-blueness equivalence rela- 
tion, =-2, may be defined similarly. 

is that the measures of redness-green- 
ness and yellowness-blueness obtained 
by cancellation to C1 and C2 neutrality 
are linear combinations of the trichro- 
matic color-matching functions. It can 
be shown that this is the same as the 
assertion that the empirical relations 
i-1, 0, * anld =2, 0, * yield 1-chro- 

matic Grassmann structures (Eqs. 8, 9, 
and 10, with 1-chromacy replacing tri- 
chromacy) compatible with the trichro- 
matic structure =, 0, *. In particular, 
this requires that the following two 
qualitative laws hold: 

If a -_ b and a is in Ci, then b is in Cl 
(and likewise for C2) (11) 

If a is in C1, t * a is in C1, 
and b is in C1 if and only if 

a ? b is in C1 (and likewise for C2) (12) 
The law shown in Eq. 11 is surely 

correct. Their results give indirect sup- 
port to Eq. 12 and there is some direct 
evidence for it, but a more careful test 
is needed. It should be remarked in this 
connection that C1 and C2 (like the set 
of lights that appear chromatic) vary as 
a function of adaptation and surround 
color, and that these sets may not satis- 
fy Eq. 12 except with achromatic or 
near achromatic conditions, such as 
those used by Jameson and Hurvich. 

When these laws hold, it is possible 
to get a tightly constrained measure- 
ment representation Sp =, (1, F21, f3), 
where yp gives trichromatic color mea- 
surement, y_ measures redness-green- 
ness, and (2 measures yellowness-blue- 
ness. Here, (1 and c2 are ratio scales. 
Under conditions where whiteness- 
matching also yields a 1-chromatic 
Grassmann structure, f3 can be re- 
quired to measure whiteness on a ratio 
scale. These measures are based on 
cancellation and matching, or both, and 
will not coincide numerically with the 
results of direct-estimation experiments; 
the qualitative laws linking direct esti- 
mation of hue to cancellation measures 
remain to be elucidated. 

Discussion 

The above examples all indicate that 
measurement of psychological variables 
is a consequence, rather than a fore- 
runner, of lawfulness. In many experi- 
ments, one collects quantitative data, 
relying on counting, on physical mea- 
surement, or on some well established 
method of psychological measurement. 
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In such cases, one does not have new 
measurement of a new psychological 
variable; one simply has a count, or a 
measure of a well-known physical or 
psychological quantity, which is often 
hypothesized to be correlated with the 
new psychological variable under in- 
vestigation. New measurement-that is, 
a new numerical function-is intro- 
duced only to provide a simpler repre- 
sentation of the results of such experi- 
ments. When such new measurement 
has been possible, the data (quantitative 
or qualitative) have yielded a measure- 
ment structure. 

For example, consider the Hurvich- 
Jameson method of measuring redness 
by canceling via admixture of a stan- 
dard green light. Their procedure was 
bound to lead to a number-the mean 
intensity of the green light at which 
their observers were satisfied with the 
adjustment to neutrality. This number 
is a physical measure of the intensity 
of the green cancellation light. One can, 
by fiat, identify this physical measure, 
as an operational definition of "red- 
ness," but to do so would be foolish. 
Suppose some other green cancellation 
light led to results that were not propor- 
tional to those obtained by the first 
light; which, then, would measure "red- 
ness?" Once one determines that the 
results are unaffected by the choice of 
the green cancellation light, one already 
has lawfulness; indeed, this invariance 
result is essentially equivalent to the 
law shown in Eq. 12. Jameson and 
Hurvich derived their confidence in 
their measurements from a different 
manifestation of Eq. 12: the fact that 
the results were lawfully, indeed linear- 
ly, related to color-matching functions. 
If one were to have no such lawfulness, 
then blindly stating that one particular 
set of measurements constitutes the op- 
erational definition of "redness" would 
merely conceal the fact that one had 
really only measured the physical in- 
tensities of some particular green light. 

Moreover, once new functions have 
been introduced, giving a simple repre- 
sentation of lawful empirical relations, 
intuitive names like "redness" may give 
way to new names that describe better 
the nature of the functions introduced. 
These sharper names correspond to new 
empirical distinctions, which might nev- 
er have been discovered if one were 
content merely to identify a count or 
a physical measure as an operational 
measure of a psychological variable. 

How much lawfulness is sufficient for 
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a 1 4 a" 1' 4' 

a' 3 2 a'" 3' 2' 

b b' b" b"' 
Fig. 6. Experimental design to test a 
qualitative law that is necessary in a 
measurement structure where scale values 
of a and b factors are added, and their 
sum is multiplied by the c scale value. The 
law states that if one diagonal of the un- 
primed (c) matrix dominates one diagonal 
of the primed (c') matrix, then the other 
pair of diagonals cannot have reversed 
dominance (c' dominating c). 

psychological measurement? This ques- 
tion has no general answer, of course, 
but recent theoretical studies in mea- 
surement foundations go some way 
toward answering it. If the empirical 
observations can be cast in the form of 
a conjoint structure with three or more 
factors, then the independence laws are 
essentially sufficient for additive mea- 
surement; or other sufficient sets of laws 
are known for some kinds of nonaddi- 
tive measurement. Similarly, Stevens' 
instructions for "proportional judg- 
ment" suggested a generalization of 
two-factor conjoint structures with the 
law shown in Eq. 7 as the sufficient 
condition of ratio-scale measurement. 
Likewise, knowledge of Grassmann 
structures permits one to recognize the 
laws that must hold for the Hurvich- 
Jameson cancellation procedure to yield 
a linear transformation of color-match- 
ing functions, which measures redness- 
greenness, and so on. In short, research 
on measurement structures (3-5) has 
amassed a collection of abstract mea- 
surement structures; if data can be 
made to fit some variant or some exten- 
sion of these known structures, then 
various measurement representations 
with convenient properties can be con- 
structed. 

The known abstract measurement 
structures provide a tool that can be 
powerful, but also perhaps dangerous. 
The power comes from the discovery 
of experiments that really should have 
been done before but were not done. 
For example, there have been a number 
of papers in which investigators have 
attempted to test whether, in the re- 
sponse-strength example given earlier, 
drive, incentive, and habit combine by 
(P1 + Y2 + 9t3 or (1 + --2)a3; one now 
sees how to do much more decisive ex- 
periments (11) by testing joint-factor 
independence and other laws, such as 

Eq. 6. In general, tests of joint-factor 
independence are likely to be scien- 
tifically fruitful: when they fail, they 
may fail systematically, in highly inter- 
esting ways (the examples of comple- 
mentary or substitutable commodities 
were cited above). Likewise, Eq. 7 for 
relative judgments of stimulus pairs and 
Eq. 12 for color appearance deserve di- 
rect investigation. 

The danger of this tool, however, lies 
in the fact that for many substantive 
areas of psychology, there is absolutely 
no reason to expect qualitative laws 
leading to measurement structures. The 
goal of scientific psychology is not mea- 
surement, but theory. And theory 
comes in various and unexpected forms. 

To take an example from another 
science: one of the seminal qualitative 
laws of chemistry was the law of stoichi- 
ometric proportions. This law might at 
first seem to suggest a sort of chemical 
measure, that is, valence. But the fact 
that valence is a multivalued and par- 
tially periodic function of atomic num- 
ber leads in a quite different theoretical 
direction: to the periodic table, and 
ultimately, to the electron-shell theory. 

In fact, biology and chemistry have 
not produced measurement structures. 
In these sciences, physical measurement 
is employed extensively, and qualitative 
and quantitative laws abound; these 
laws have, in turn, led to various sorts 
of theories. One might well expect that 
many areas of psychology should pro- 
ceed similarly; and indeed, many of the 
best established and most lawful areas 
do so. The idea of measuring psycho- 
logical variables such as loudness, util- 
ity, and intelligence is still very attrac- 
tive, and in some cases, successful; but 
a focus that is devoted exclusively to 
measurement may be sterile. It would 
seem much more fruitful to look for 
any kinds of regularities and laws, 
using known abstract measurement 
structures merely as a sometimes useful 
heuristic tool. Occasionally, newly dis- 
covered laws may generate novel mea- 
surement structures, but more often, 
other kinds of theory may result. 

I have not yet discussed what is 
actually the largest and best known 
body of literature on psychological 
measurement: psychometrics. In all of 
the various areas of psychometrics, 
measurement still depends critically on 
lawfulness. The laws that are involved, 
however, are mostly much more com- 
plicated than any of the ones described 
above. One postulates a geometric and 

SCIENCE, VOL. 175 



a statistical model, or both; the law that 
holds is simply that the model fits the 
data (with a sufficiently low number of 
dimensions in the case of geometric 
models); and the measures are coordi- 
nates in the geometric model, or param- 
eters of the hypothetical probability 
distributions. In other words, the laws 
in question usually do not have simple 
statements directly in terms of observ- 
able empirical relations; they cannot be 
summarized in any better way than by 
saying that such-and-such a model fits 
the data, in so many dimensions. 

When a psychometric model does 
give a spectacular fit in a low dimen- 
sionality, with measurement parameters 
that make sense and vary appropriately 
under psychological manipulations of 
various sorts, the scientific value of the 
results can scarcely be doubted. The 
main disadvantages of such an ap- 
proach are: 

1) Because the laws are so complex, 
failures to fit are both harder to detect 
(violations may be hidden in random 
error) and less informative when de- 
tected, as compared with tests of the 
sort of qualitative laws described here. 

2) The approach presupposes mea- 
surement as the goal, and is therefore 
even more subject to the dangers of 
inappropriate theorizing that I have just 
described above. 

The first point can be met, in some 
cases, by reducing the complex model 
to a series of simpler qualitative or 
quantitative laws. This has been partial- 
ly accomplished for Thurstonian scaling 
(34) and for multidimensional scaling 
(19). 

Conclusions 

Empirical laws in psychology may be 
based on physical measurements (for 
example, voltages, times), counting, or- 
dering, or just classifying. It is a point- 
less, though widespread practice to use 
a physical measure or a count as a 
"definition" of a psychological variable; 

this practice obscures the fact that all 
one has done is measured a physical 
variable, or counted. What is important 
are the empirical laws that are estab- 
lished by use of such quantitative or 
qualitative observations. Some kinds of 
empirical relations and laws yield mea- 
surement structures, akin to the qual- 
itative structures underlying fundamen- 
tal measurement in physics. Measure- 
ment structures are empirical structures 
that can be described most simply by 
introduction of a new numerical func- 
tion; such a function is a new measure, 
and is typically interpreted as measur- 
ing some particular psychological vari- 
able. 

Measurement structures, formulated 
abstractly, sometimes provide valuable 
tools for formulating new empirical hy- 
potheses to be tested; but in many in- 
stances, other kinds of theory may be 
more appropriate. The main focus of 
research ought always to be the discov- 
ery of simple laws; these may or may 
not lead to new measures. 
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