
Xenon as a Nucleophile in Gas-Phase Displacement 
Reactions: Formation of the Methyl Xenonium Ion 

Abstract. Xenon undergoes reaction with protonated methyl fluoride in the 
gas phase to form abundant quantities of the stable methyl xenonium ion, 
CH3Xe+. Estimated values for the xenon-carbon and krypton-carbon bond 
strengths in the rare gas-methyl molecular ions are 43 ? 8 and 21 + 15 kilo- 
calories per mole, respectively. 

Several groups of investigators have 
reported the formation by ion-molecule 
reactions in a mass spectrometer of 
molecular ions containing rare gas 
atoms (1-8). Such ions have included 
ZH+ (1-4) and small amounts (less 
than 1 percent of the total ionization) 
of ZCMHn + (m = 1, 2; n =0 to 4) 
(1-3, 5, 6), ZY+ (Y=C1, Br, I, 0) 
(5), ZC2N2+ (7), Z2 + (1, 2, 8, 9), 
ZN2+ (9), and ZCO+ (9), where Z is 
a rare gas atom, usually xenon. In a 
different series of studies the produc- 
tion of rare gas-alkyl ions resulting 
from the P3--decay of the correspond- 
ing isoelectronic radioactive alkyl ha- 
lides has been observed (10-12). For 
example, 1311-labeled CH3I undergoes 
l--decay to produce CH3Xe+ with 
the molecular ion remaining intact in 
69 percent of the decays (12). Obvi- 
ously, molecular ions containing rare 
gas atoms have some degree of stability. 

We have recently reported the gen- 
eral occurrence of a gas-phase ionic 
process which has the character of a 
nucleophilic displacement reaction (13, 
14). The displacement reaction general- 
ized in reaction 1 occurs, provided that 
two criteria are met: (i) the reaction is 
exothermic; and (ii) proton transfer 
from the substrate, CH3M+, to the 
nucleophile, N, is endothermic (13, 14) 

CH3Xe+ increases with pressure, ris- 
ing to 37 percent of the total ion cur- 
rent at 4 X 10-4 torr (Fig. 1). Double 
resonance experiments indicate that 
CH3Xe + is formed by reaction 2 

CH3FHI+ + Xe -- CH3Xe+ + HF (2) 
The second-order rate constant asso- 
ciated with reaction 2 is estimated to 
be 5 X 10-12 cm3 molecule-' sec-1 
(3 X 109 M-1 sec-1), a rather slow 
nucleophilic displacement reaction (14). 
Investigations at pressures higher than 
4 X 10-4 torr were prevented by reso- 
lution. problems resulting from collision- 
broadening of peak shapes. As in pre- 
vious studies (14), the purpose of H2 
in the reaction mixture was to provide 
an agent capable of torming a proton- 
ated substrate, CH3FH+, without un- 
wanted side reactions. 

In contrast to the above results, ex- 
amination of a mixture containing 
CH3C1, Xe, and H2 in the mole ratio 
1: 130: 33, respectively, did not lead 
to the formation of any detectable 
amounts of CH3Xe+ under conditions 
such that CH3ClH+ and (CH3)2C1+ 
were readily formed. Since the proton 
affinity of CH3Cl is greater than that 
of Xe (17, 18), the second of the two 
criteria given above as requirements for 
reaction 3 to occur is satisfied. We 

infer, therefore, that reaction 3 does 
not occur because it is endothermic 

CHCHlI + Xe , CH3Xe+ + HC1 (3) 

Similarly, a mixture containing 
CH3F, Kr, and H2 in mole ratios vary- 
ing from 1: 50: 400 to 1: 1000 : 400, 
respectively, was examined. Although 
protonated methyl fluoride was present 
in abundance no detectable amounts 
of CH3Kr+ were observed. Here again, 
since the proton affinity of CH3F is 
greater than that of Kr (17), the in- 
ference is that reaction 4 does not 
occur because it is endothermic 

CH3FH+ + Kr ( CH3Kr + HF (4) 
The above results enable us to calcu- 

late certain thermochemical quantities. 
The carbon-xenon bond dissociation 
energy in CH3Xe+ is given by the 
methyl cation affinity (13) of xenon, 
MCA(Xe). The course of reactions 2 
and 3 bracket MCA(Xe) as MCA- 
(HC1) =51 kcal/mole (13) > MCA- 
(Xe) > MCA(HF) 36 kcal/mole (13). 
Thus MCA(Xe) = 43 ? 8 kcal/mole, 
equivalent to a heat of formation 
AHf(CH3Xe+) of 217 + 8 kcal/mole. 
Similarly, the carbon-krypton bond dis- 
sociation energy in CH3Kr+ is given 
by MCA(Kr). The course of reaction 4 
indicates that MCA(HF) =36 kcal/ 
mole (13) > MCA(Kr), equivalent to 
AHt(CH3Kr+) - 224 kcal/mole. Field 
et al. (2) have observed reaction 5, 
which indicates that AHf(CH3Kr+) 
253 kcal/mole (19) 

Kr + CH, -> CHKr + H (5) 

Thus, AHf(CH3Kr+) = 239 ? 15 kcal/ 
mole, equivalent to MCA(Kr) = 21 ? 
15 kcal/mole. Carlson and White (10- 

N + CH3M+ -> CH3N+ + M (1) 

The success achieved when the simple 
diatomic molecules N4 and CO were 
used as nucleophilic reagents (14) sug- 
gested the intriguing possibility that it 
might be possible to employ rare gas 
atoms as nucleophilic reagents. We re- 
port here the use of xenon as the 
nucleophile in reaction 1 to generate a 
rare gas-alkyl molecular ion (15). 

Examination by ion cyclotron reso- 
nance spectroscopy (16) at 70 ev of a 
mixture containing CH3F, Xe, and H2 
in the mole ratio 1: 100: 400, respec- 
tively, leads at a pressure of ' 7 X 
10-5 torr to the observation of ions at 
a mass-to-charge ratio m/e of 144 to 
151, corresponding to the various iso- 
topes of CH3Xe+. The abundance of 
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Fig. 1. Single resonance spectrum of a mixture of H2, 
ratio 400: 1: 100, respectively, at 4 X 10-' torr and 70 
also contains contributions from Xe+. 
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12) have pointed out the importance of 
knowing quantitative values of these 
heats of formation in order to under- 
stand the ions resulting from nuclear 
decay of the radioactive alkyl halides. 
For example, in 69 percent of the radio- 
active decays of 1311-labeled CH3I the 
parent ion CH3Xe+ remains intact; by 
comparison, in the radioactive decay of 
82Br-labeled CH3Br only 0.4 percent of 
the decays produce CH3Kr+ (10). This 
result is readily interpretable in terms 
of the carbon-rare gas bond energies 
estimated above (43 and 21 kcal/mole 
for xenon and krypton, respectively) 
and the average excitation energy de- 
posited in the carbon-rare gas bond as 
a result of the fl--decay of the radio- 
active alkyl halide (5 and 56 kcal/ 
mole for xenon and krypton,- respec- 
tively) (10). 

The findings presented here add to 
a growing body of evidence indicating 
the generality of gas-phase nucleophilic 
displacement reactions (13, 14). The re- 
sults also indicate that the nucleophilic 
displacement process generalized in re- 
action 1 may be conveniently used in 
favorable cases for the gas-phase syn- 
thesis of rare gas-organic molecular 
ions of interest. 

DAvD HOLTZ 
J. L. BEAUCHAMP 

A. A. Noyes Laboratory of Chemical 
Physics, California Institute of 
Technology, Pasadena 91109 
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Antiprismatic Coordination about Xenon: 

The Structure of Nitrosonium Octafluoroxenate(VI) 

Abstract. The structure of nitrosonium octafluoroxenate(VI), 2NOF XeF6, has 
been determined by means of single-crystal x-ray counter methods (R-index = 
0.046, weighted R-index = 0.042). The space group is Pnma, with a = 8.914(10) 
angstroms, Jb = 5.945(10) angstroms, and c = 12.83(2) angstroms (the numbers in 
parentheses are the standard deviations to the least significant digit or digits); the 
calculated density (p) is 3.354 grams per cubic centimeter, and there are four 
formula units per unit cell. The material consists of well-separated NO+ and 
(XeF8)2- ions; the structural formula is thus (NO)2 (XeF8). The anion configura- 
tion is that of a slightly distorted Archimedean antiprism. The observed distortion 
appears incompatible with a lone-pair repulsion model. Xenon-fluorine bond lengths 
of 1.971(7), 1.946(5), 1.958(7), 2.052(5), and 2.099(5) angstroms were found. 
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