
Eukaryotes versus Prokaryotes: 
An Estimate of Evolutionary Distance 

Abstract. The divergence of nucleated organisms and bacteria was 2.6 times 
more remote in evolution than the divergences of the nucleated organisms into 
separate kingdoms, as evidenced by genetic changes in cytochrome c and transfer 
RNA. The development of the genetic code through the differentiation of transfer 
RNA's for different amino acids was still more remote in evolution. The overall 
rates of transfer RNA evolution in bacteria and nucleated organisms were 

comparable. 
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codon would alter the basic function of 
the molecule. Also, one side of each 
base-paired region was removed from 
the tRNA sequences. These base-paired 
regions maintain the conformation of 
the molecule (6), and in all of the 
known sequences only 5 percent of the 
pairs are mismatched. Whenever one 
member of a pair mutates, selection 
pressure evidently favors a second muta- 
tion in the pair to reestablish the bond- 
ing; thus the evolution of the two sides 
is not independent. 
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became more numerous over longer 
periods of evolution. A direct count of 
changed positions would underestimate 
the actual number of separate changes 
and thus reduce the apparent evolu- 
tionary distance. Therefore, using the 
curves of Fig. 1, we have estimated the 
true number of changes. These curves 
were based on a model of random muta- 
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Prokaryotes known for all of them. At least two types 
contribute to each estimate of distance; 
thus, we considered the tRNA's as 
equivalent to two sets of comparisons 
comprising 116 unit characters. To com- 
bine the data from the different kinds 
of molecules in proportion to the num- 
bers of unit characters counted, the 
cytochrome average was weighted as 
48 percent and added to the tRNA 
average, which was weighted as 52 
percent. The eukaryote kingdoms are 
separated by an average of 36 PAM's, 
whereas the prokaryotes are 93 PAM's 
distant from the eukaryotes (Fig. 3). 
The quantity of difference, in unit char- 
acter changes, from the eukaryotes to 
the prokaryotes is 2.6 times as great 
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,otides and the Thus, it can be seen that there is 
e of one amino greater similarity among the eukaryote 
iother, based on groups than between any of these and 
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ted in the data,, The relationship of time to the 

luences are not amount of change in unit characters is 

of great interest. One might expect the 
rate of change in sequences to corre- 
spond to the rate of change in morphol- 
ogy and thus that the bacteria would 
show less change than the eukaryotes. 
On the other hand, one might expect 
the bacterial sequences to change more 
rapidly, as indicated by the ease of pro- 
ducing mutant strains in the laboratory. 

We can compare the rate of change 
in tRNA in the two major groups of 
organisms. Within the prokaryote line, 
and separately within the eukaryote line, 
we compared tRNA's of different types, 
for example, valine tRNA and phenyl- 
alanine tRNA from Escherichia coli. 
The time interval is the same for 
these comparisons because the diver- 
gence of the tRNA's took place in 
a common ancestor before the diver- 
gence of the eukaryote and prokaryote 
lines. A number of separate counts of 
this type are possible for the tRNA's 
of phenylalanine, valine, and tyrosine. 
There is an average of 22.2 changes 
for the bacterial line and an average of 
22.7 changes for the eukaryote lines, 
with a standard deviation of -2.8 
changes. From these data, it is evident 
that the overall rates of tRNA evolu- 
tion in the bacterial and eukaryote lines 
are comparable. We have therefore 
drawn Fig. 3 as though the rates were 
the same. 
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Scanning Electron Microscopy of Developing Plant Organs 

Abstract. Shoot apices and young meristematic leaves can be examined directly 
with the scanning electron microscope without prior fixation or metal coating. The 

form of the shoot apex, cellular organization, and leaf arrangement (phyllotaxis) 
can be observed, perhaps as they have never been visualized before. 
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A large volume of literature is avail- 
able on phyllotaxis and on the form, 
structure, and development of shoot 

apices and leaves. Ordinarily, the re- 
sults of these investigations are based 
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with the light microscope or, in some 
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graphic records of entire living shoot 
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graphic records of entire living shoot 

apices are often difficult to obtain. In 
some instances, material is chemically 
fixed and stained, and the entire object 
is photographed in the conventional 

way (1). These preparations are often 
excellent, but they frequently lack a 
three-dimensional quality. 

Einert et al. (2) have examined 
Lilium apices with the scanning elec- 
tron microscope (SEM); however, 
their preparative procedure involved 

freeze-drying and exposure to acetone, 
which resulted in some distortion of 
the tissues. 

It was recently shown (3) that sur- 
faces of fragments of mature leaves 

may be examined in the wet and fresh 
condition with the SEM without re- 
course to metal coating to prevent an 
accumulation of surface charge. We 
found the same to be true for meriste- 
matic regions of the plant. 

We wish to report that the SEM is 
an excellent instrument for examining 
delicate meristematic regions such as 
the shoot apex itself and young leaf 

primordia or floral appendages, at least 
in many species. Moreover, the SEM 
offers resolution and depth of field not 

always attainable by light microscopy. 
Figure 1 is representative of our re- 
search with the shoot tips of Tropae- 
olum. Older leaves were removed until 
the shoot apex and young leaf primor- 
dia were visible. Then the shoot tip 
was attached to a specimen stub with 
an animal-hide glue. No fixatives, de- 
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Fig. 1. The apex and four leaf primordia of the vegetative shoot tip of Tropaeolum, as viewed from above. Fig. 2. A portion of 
the abaxial surface of an entire young Tropaeolum leaf, the lamina of which measured 1 cm. Veins are normally prominent in 
leaves of Tropaeolum. 
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