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100-, 1,000-, or 10,000-fold with dis- 
tilled water to yield test solutions which 
contained, respectively, 100, 10, or 1 
unit/ml. A portion of the crude filtrate 
was desalted and deproteinized by the 
method of Luke and Wheeler (7). This 

partly refined material was diluted and 
tested at the same concentrations as the 
crude filtrate. Portions of crude and 
refined victorin, detoxified as described 
(3) and diluted to the same extent as 
the active solutions, served as controls. 

Bean plants were grown in Vermic- 
ulite irrigated with half-strength Hoag- 
land's solution. When the primary 
leaves were partially expanded, but be- 
fore the first trifoliate leaf had begun 
to unfurl, the plants were cut off at the 
base of the stem and placed in the test 
solutions. The plants were allowed to 
take up the test solutions for 36 hours 

(12 hours of light at 8800 lu/m2, 12 
hours dark, 12 hours light), at 23?C, in 
a controlled environment chamber. The 

primary leaves were then dusted with 
carborundum and inoculated with sus- 

pensions of purified alfalfa mosaic virus 

(AMV) or tobacco mosaic virus (TMV), 
at concentrations which would produce 
about 50 to 150 lesions per half-leaf on 
the controls. 

Plants treated with 10 units of vic- 
torin per milliliter were rendered 

highly resistant to both AMV and 
TMV. In most tests, leaves from plants 
treated with victorin were virtually free 
of lesions (Fig. 1A), whereas more than 
100 lesions per half-leaf were produced 
on controls (Fig. 1B). In every test, 
treatment with victorin resulted in a 

Table 1. Effect of prior treatment with vic- 
torin (10 unit/iMi for 36 hours) on the re- 
sponse of Pinto bean primary leaves to 
alfalfa mosaic virus and tobacco mosaic virus. 

Lesions per 

Ex- Repli- ^half-leaf Ex- 
peri- 

ca 
Victorin Vic- Con- tions 

ment tionstorin trol 
m t(No.) o(av. (av. 

No.) No.) 

Alfalfa mosaic 
1 3 Crude 5 69 
2 2 Crude 6 83 
3 4 Crude 3 58 
4 4 Refined 1 42 
5 3 Refined <1 53 
6 3 Refined < 1 116 

Tobacco mosaic 
1 3 Crude 0 73 
2 3 Crude 4 93 
3 3 Refined 0 133 
4 3 Refined 0 63 

reduction in numbers of lesions of more 
than 90 percent (Table 1). 

Extensive necrosis developed on 
leaves of plants treated with 100 units 
of victorin per milliliter whether or 
not the leaves were subsequently in- 
oculated with virus (Fig. 1C). This 
made accurate counts of virus-induced 
lesions impossible, but protection ap- 
peared to be complete because virus- 
inoculated leaves showed no symptoms 
not found on controls. No significant 
differences in numbers of lesions were 
found among plants treated with 1 
unit/ml, those treated with detoxified 
victorin, and those merely held in 
water. 

The sensitivity of bean leaves to 

victorin varied with their stage of devel- 
opment. Primary leaves 2 to 3 days 
younger than those shown in Fig. 1 
were usually not injured when treated 
with 100 units of victorin per milliliter, 
and this concentration was also re- 
quired to induce significant resistance 
to the two viruses. Leaves 2 to 3 days 
older than those in Fig. 1 were much 
more sensitive and were often injured 
when treated with 10 units of victorin 
per milliliter, the lowest concentration 
which markedly reduced virus symp- 
toms. A similar increase in sensitivity 
with age has been observed in victorin- 
treated first leaves of oats (5). 

Victorin is capable of activating a 
defense mechanism in beans which is 
highly effective against two viruses. 
This and the increased sensitivity of 
older leaves, which are presumably less 
capable of self-repair, support the hy- 
pothesis that resistance to victorin de- 
pends on the ability of the plant to 

repair the initial damage caused by 
this pathotoxin. 

Systemic resistance to plant viruses, 
similar to but less complete than that 
caused by victorin, has been induced 
by infection with other viruses (8, 9) 
or with fungal pathogens (10). As vic- 
torin itself is pathogenic (1), our results 
might be considered another example 
of resistance to one pathogen induced 
by prior exposure to another pathogen. 
Necrosis caused by the initial infection, 
possibly a diffusible product of the ne- 
crotic process, has been associated with 
resistance induced by prior infection 
with viruses and fungi (9, 10). Victorin, 

Fig. 1. Primary leaves of Pinto beans. (A) Symptomless leaf fro m plant treated with 10 units of victorin per milliliter for 36 
hours and then inoculated with tobacco mosaic virus (TMV). (B) Control leaf treated with detoxified victorin and inoculated 
with TMV. Minute dark spots are virus lesions. (C) Necrosis caused by treatment with 100 units of victorin per milliliter in a leaf 
not inoculated with virus. 
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however, induced virtually complete re- 
sistance at concentrations that did not 
cause necrosis. This may mean that 
different mechanisms of resistance are 
involved or, because victorin at higher 
concentrations causes necrosis, it may 
be that actual necrosis is not required 
but only the initiation of a process 
which leads to it. 

Although victorin and Victoria blight 
have served as a model system for ex- 
tensive investigations of pathogenesis 
and the nature of disease resistance in 
oats (1, 11), this is the first report of 
an effect of this pathotoxin on a plant 
which is not a member of the grass 
family. Failure to detect such effects 
in earlier investigations can be attrib- 
uted in part to the highly selective na- 
ture of victorin; the 100 unit/ml re- 
quired to injure bean leaves is 100,000 
times higher than the 0.001 unit/ml 
which causes 50 percent inhibition of 
root growth in susceptible oats (6). Low 
sensitivity of the very young seedlings 
used in previous attempts to demon- 
strate effects of victorin on plants other 
than susceptible oats (6) may also have 
been a factor. 

The extreme instability of purified 
preparations of victorin makes an ac- 
curate estimate of its potency impossi- 
ble. However, the refined preparation 
used in this study contained, on a dry 
weight basis, 1 mg of solids per milli- 
liter. Disease resistance was induced 
by a thousand-fold dilution of this 
preparation or at a concentration of 
solids of 1 /Ig/ml. Because our refined 
preparation was not pure, the actual 
potency must be much higher. This evi- 
dence of high potency, even to resistant 
tissues, and the fact that victorin strong- 
ly inhibits auxin-induced cell elonga- 
tion (12) suggest that this pathotoxin 
has great potential for investigation of 
physiological processes in plants. In 
particular, victorin should provide a 
useful model system to study nonspe- 
cific defense mechanisms in higher 
plants. 

HARRY WHEELER 
THOMAS P. PIRONE 

Department of Plant Pathology, 
University of Kentucky, Lexington 
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m-Hydroxyphenylacetic Acid 
Formation from L-Dopa in Man: 
Suppression by Neomycin 

Abstract. The increased excretion of 
m-hydroxyphenylacetic acid in the urine 
of patients with parkinsonism being 
treated with L-dopa was reduced by gut 
sterilization with neomycin. The p-de- 
hydroxylation step is thus brought 
about solely by the action of gut flora; 
the pathway is unlikely to be involved 
in the events within the brain leading 
to the therapeutic benefit effected by 
L-dopa. 

A substantial proportion of patients 
with parkinsonism obtain more thera- 
peutic benefit from L-dopa (dihydroxy- 
phenylalanine) than from any drug 
previously available (1). While it has 
been assumed that clinical improve- 
ment stems from dopamine generation 
within the central nervous system, Calne 
et al. (2) have pointed out that such 
a chemical transformation is likely to 
be rapid (3) whereas the time course 
of the therapeutic response to the drug 
is slow (1). The possibility cannot there- 
fore be ruled out that the clinical effect 
derives not from dopamine replacement 
but from the buildup of some minor 
metabolite unconnected with the main 
route of dopa degradation. Therefore 
we charted minor pathways of dopa 
metabolism revealed by the large doses 
of drug employed (up to 8 g/day). 

The existence of one such pathway, 
terminating in an increased urinary out- 
put of m-hydroxyphenylacetic acid (m- 
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m-Hydroxyphenylacetic Acid 
Formation from L-Dopa in Man: 
Suppression by Neomycin 

Abstract. The increased excretion of 
m-hydroxyphenylacetic acid in the urine 
of patients with parkinsonism being 
treated with L-dopa was reduced by gut 
sterilization with neomycin. The p-de- 
hydroxylation step is thus brought 
about solely by the action of gut flora; 
the pathway is unlikely to be involved 
in the events within the brain leading 
to the therapeutic benefit effected by 
L-dopa. 

A substantial proportion of patients 
with parkinsonism obtain more thera- 
peutic benefit from L-dopa (dihydroxy- 
phenylalanine) than from any drug 
previously available (1). While it has 
been assumed that clinical improve- 
ment stems from dopamine generation 
within the central nervous system, Calne 
et al. (2) have pointed out that such 
a chemical transformation is likely to 
be rapid (3) whereas the time course 
of the therapeutic response to the drug 
is slow (1). The possibility cannot there- 
fore be ruled out that the clinical effect 
derives not from dopamine replacement 
but from the buildup of some minor 
metabolite unconnected with the main 
route of dopa degradation. Therefore 
we charted minor pathways of dopa 
metabolism revealed by the large doses 
of drug employed (up to 8 g/day). 

The existence of one such pathway, 
terminating in an increased urinary out- 
put of m-hydroxyphenylacetic acid (m- 
HPAA), was noted during a trial of 
dopa in patients with parkinsonism (2). 
DeEds et al. (4), who made a similar 
observation after feeding DL-dopa to 

HPAA), was noted during a trial of 
dopa in patients with parkinsonism (2). 
DeEds et al. (4), who made a similar 
observation after feeding DL-dopa to 

rabbits, considered that m-HPAA might 
derive from the p-dehydroxylation of 
an intermediate in the reaction se- 
quence, 3,4-dihydroxyphenylacetic acid. 
However, the possibility that the trans- 
formation occurs at some other stage, 
perhaps by p-dehydroxylation of dopa 
itself, of dopamine, or even of dihy- 
droxyphenylpyruvic acid, with the re- 
maining metabolic steps taking place 
after absorption of the dehydroxylated 
product, cannot be ruled out. A human 
stool suspension can bring about p- 
dehydroxylation in vitro of a variety 
of phenolic acids (5). If p-dehydroxy- 
lation of the catechol moiety by gut 
flora (6) were an essential step in the 
production in vivo of m-HPAA from 
L-dopa in man, gut sterilization with 
neomycin might decrease the urinary 
output of m-HPAA. 

Six patients with idiopathic parkin- 
sonism, receiving their maximum toler- 
ated oral dosage of L-dopa (Fig. 1), 
were given oral doses of neomycin (1 
g) daily. L-Dopa metabolism is unlike- 
ly to differ in healthy subjects and sub- 
jects with parkinsonism (2). Urine 
samples were collected before and dur- 
ing day 3 of neomycin treatment. The 
m-HPAA was isolated from urine satu- 
rated with salt (3 ml diluted to 10 ml 
with 0.01N HC1) at pH 2.0 by extract- 
ing twice (25 ml) with ethyl acetate. 
Portions (20 and 25 ml, respectively, 
pooled) of the extracts were evaporated 
to dryness under vacuum at 40? to 
50?C, and the methyl ester-trimethyl- 
silyl ether derivative was prepared. This 
was separated from other phenolic acid 
derivatives by isothermal (190?C) gas 
chromatography (7) on a Pye Pan- 
chromatograph with a 210-cm 10 per- 
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Fig. 1. Excretion of m-hydroxyphenyl- 
acetic acid (m-HPAA) before (hatched 
columns) and during (solid columns) 
day 3 of oral administration of neomycin 
(1 g/day). The subjects were six patients 
with parkinsonism being treated orally 
with L-dopa at the dosage shown. 
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