
ing period. Analysis of variance yielded 
significant main effects of treatment con- 
ditions (F = 7.58, d.f. 2/18, P < .01) 
and blocks of days (F = 5.06, d.f. 3/27, 
P < .01). As the interaction was insig- 
nificant (F < 1.0 overall treatment 
means were compared by the Newman- 
Keuls procedure (3). The E trials were 
significantly slower (P < .05) than N or 
R trials. Figure 2 shows the running 
speeds were slower on extinction as 
were again slower than trials on new 
paper after the first three test days. 
Trials on reward paper displayed a 
more aberrant trend measured by run- 
ning speed than by starting speed. The 
R trials were slower than E and N 
trials over the first half of testing. How- 
ever, from day 7 until the end of the 
testing period, performance on reward 
paper was coincident with trials on new 
paper; both were faster than trials on 
extinction paper. Analysis of variance 
yielded only a significant main effect 
of treatment conditions (F = 3.66, d.f. 
2/18, P < .05). Again the interaction 
was insignificant (F = 1.74, d.f. 6/54, 
P > .10) and comparison of the overall 
treatment means was made by the 
Newman-Keuls procedure. The E trials 
were significantly slower (P < .05 than 
N, but not R trials. 

These results indicate that the odor 
trace of a rat undergoing experimental 
extinction can significantly disrupt the 
performance of a subsequently run ani- 
mal that was continuously reinforced. 
This disruption has previously been 
termed the "pseudo-extinction" effect 
and was evidenced as slower starting 
speeds on E as compared to N and R 
trials and slower running speeds on E 
as compared to N trials. This suggests 
that the mere traversal of another sub- 
ject is not sufficient to disrupt the suc- 
ceeding animal's performance. Rather, 
the state of the animal laying the trace 
seems to be critical in the elicitation of 
competing behaviors within the experi- 
mental animals. The pattern of results 
evidenced by the two dependent vari- 
ables was different. There is the possi- 
bility that the repeated testing proce- 
dure had differential effects on run- 
ning than on starting times, this influ- 
encing the time course of the observed 
effects. 

Our experiment does not discriminate 
between qualitative and quantitative 
odor effects since experimentally ex- 
tinguished animals were on the paper 
floor longer than rewarded animals. 
Nor does it identify the olfactory stim- 
uli involved, particularly whether these 
olfactory stimuli are isolable from those 
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of the excretory products del osited by 
the ET animals. The experiment does, 
nonetheless, demonstrate the impor- 
tance of olfactory stimuli to the 
"pseudo-extinction" effect. 

Rats can discriminate odors from ani- 
mals of the same species put under 
stress by electric shock (4). Experimen- 
tal extinction is apparently a situation 
capable of producing the emission of 
some olfactory stimulus which, when 
present on the paper floor of a subse- 
quently run animal, elicits some be- 
havior which interferes with running 
for food reward. Such odor effects ap- 
pear to be an important, potential con- 
founding variable in studies where 
learning rather than the transmission 
of information between conspecifics by 
chemical means is investigated (5). Re- 
sults from situations involving noxious 
stimulation, such as electric shock or 
nonreward, which seem likely to in- 
crease the probability of odor emission, 
should be reevaluated because of such 

confounding. Control for odor effects 
would seem desirable if interpretation 
of experimental outcomes is to be un- 
ambiguous. 

EDWARD A. WASSERMAN 

DONALD D. JENSEN 

Department of Psychology, 
Indiana University, Bloomington 47401 
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Occurrences of CaCO3 * H20 and Its Naming 

In the report by Marschner (1) of 
the formation of the compound CaCO3 
*H20 ("hydrocalcite") in scales de- 
posited from cold waters, the statement 
that "it has hitherto not been observed 
in nature" is incorrect; the compound 
was first observed in 1959 in bottom 
sediments from Lake Issyk-Kul, Kir- 
gizia, by Sapozhnikov and Tsvetkov (2), 
whose analysis gave CaCO3 0.65H20. 
In 1964, Semenov (3) showed that the 
optical and x-ray data for the material 
corresponded to those for the well- 
known synthetic compound, hexagonal 
CaCO3 - H20. The x-ray powder dif- 
fraction data differ slightly in spacings 
and intensities from those of Marschner 
but undoubtedly refer to the same 
compound. 

A second occurrence of CaCO3 - H20 
was reported in 1963 by Carlstrom 
(4), who found it in trigonal crystals 
(a = 6.100 A, c = 7.553 A) among the 
statoconia of the tiger shark Galeocerdo 
cuvier. 

Semenov (3) named the material 

monohydrocalcite, and this name has 
priority over Marschner's "hydrocal- 
cite." The latter name is doubly un- 
acceptable, because it had already been 
used by Kosman in 1892 to designate 
material that was perhaps CaCO3 
* 2H20 or CaCO3 * 3H20 (5). This is 
an excellent example of unnecessary 
confusion in the mineralogical nomen- 
clature that could easily have been 
avoided if the proposed new name had 
been referred to the Commission on 
New Minerals and Mineral Names, In- 
ternational Mineralogical Association. 

MICHAEL FLEISCHER 
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Hard Clam Pumping Rates: Energy Requirement 

The paper by Hamwi and Haskin 
(1) on oxygen consumption and pump- 
ing rates in Mercenaria mercenaria 
seems to draw a conclusion not war- 

ranted by the data they presented. I 
have reproduced their Fig. 2, from 
which they conclude that pumping rate 
may be regulated by oxygen require- 
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