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and carbonates and other minerals in 
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may form as a result of microbiologic 
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foreign material, usually quartz grains 
or shell fragments. They are interesting 
geologically because of the extensive 
deposits they now form in many parts 
of the world and because of their occur 
rence in rocks at least as old as Cam- 
brian. Oolites generally form in shallow, 
agitated waters supersaturated with cal- 
cium carbonate, and they are used as 
environmental indicators. 

Two major theories have been pro- 
posed for oolite formation. Proponents 
of an inorganic origin, currently the 
more popular theory, suggest that oolites 
are simply physicochemical precipitates 
formed as a result of supersaturation of 
the water with calcium carbonate (5). 
The presence of organic matter in 
oolites is well documented, however, 
and has been used as evidence of an 
origin by biochemical processes (4). The 
organic matrix, about 0.1 percent by 

-weight, has been described by Newell 
et al. (5) as "a complex mesh of 
mucilaginous organic material" that is 
interlayered with the concentric arago- 
nite laminations. Remains of boring 
algae are occasionally present in the 
oolites. 

The composition of the organic 
matrix has heretofore been unknown. 
Thus, knowledge of the type of organic 
compounds in the matrix may provide 
useful information in determining the 
origin of oolites. The amino acid con- 
tent (Table 1) was determined for 
modern oolites from two localities in the 
Bahamas and one locality in the Great 
Salt Lake and for fossil oolites from the 
Atlantic Continental Shelf (6, 7). 

Oolitic sediments commonly consist, 
in addition to oolites, of calcified fecal 
pellets, tests of microorganisms, and 
shell fragments. Care must be taken in 
preparation of samples to avoid intro- 
ducing these sources of extraneous 
organic matter. Typically, a sample of 
oolites, containing only spheroidal 
grains, separated from the raw sediment 
by sieving and hand picking, and weigh- 
ing about 0.7 to 1.0 g was taken for 
analysis. The outer portion of the oolites 
was dissolved with dilute HCI to re- 
move adhering contamination. To avoid 
sampling the nucleus, which may con- 
sist of shell fragments or fecal pellets, I 
sampled only the outer 15 to 20 percent 
of the grains by dissolving the calcium 
carbonate with dilute HC1. The super- 
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Table 1. Amino acid composition of insoluble 
organic matter in oolites in residues of amine 
acid per 1000 total residues. The Great Salt 
Lake and Bahamas oolites are modern, and 
the oolites from the Atlantic Shelf are ap- 
proximately 26,000 years old. 

Locality 

Amino acid Great Baha Atlantic Salt 

Aspartic acid 190 168 205 
Threonine 42 60 59 
Serine 52 50 51 
Glutamic acid 168 86 105 
Proline 48 43 49 
Glycine 123 137 140 
Alanine 90 115 99 
Half-cystine* 16 12 trt 
Valine 62 79 65 
Methionine* 10 6 tr 
Alloisoleucine .- - 2 
Isoleucine 35 51 40 
Leucine 63 66 53 
Tyrosine 8 7 13 
Phenylalanine 32 55 37 
Ornithine 17 9 9 
Lysine 17 26 36 
Histidine 4 2 - 
Arginine 23 28 37 
Amide N (183) (103) n.d.$ 
Acidic residues ? 175 150 - 
Basic residues 66 64 82 

Total number of micromoles 
per gram of oolite 

3.6 4.5 2.3 
* Includes oxidation product. f Trace. $ Not 
determined. ? The acidic residues are aspartic 
acid plus glutamic acid, minus ammonia. 

after the acid treatment revealed that 
only the concentric layers were dis- 
solved. 

Only very small amounts of free 
amino acids were detected in Bahamian 
and Great Salt Lake oolites (10-10 mole) 
and these may have been released dur- 
ing the dilute acid treatment. The 
hydrolyzates (in 6N HCI) of the 
supernatant fluid and insoluble matter 
yielded significant amounts of combined 
acids (2 to 5 pmole of amino acid per 
gram of calcium carbonate). The release 
of amino acids by acid hydrolysis in- 
dicates that the organic substance in 
oolites is largely proteinaceous. 

The amino acid composition of this 
protein (Table 1) is remarkably similar 
for all the samples studied, considering 
the diverse geographic localities in 
which the oolites formed. The two 
Bahamian samples, only one of which 
is listed in Table 1, give identical re- 
sults. All of the oolites are character- 
ized by a high content, approximately 
175 residues per thousand, of the acidic 
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ized by a high content, approximately 
175 residues per thousand, of the acidic 
amino acids aspartic acid and glutamic 
acid. The Great Salt Lake oolites have 
a higher content of glutamic acid than 
the others. The basic amino acids, orni- 
thine, lysine, histidine, and arginine, are 
low, comprising about 65 residues. 
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Trace amounts of amino sugar were 
present in all the samples. In the fossil 
oolites, the nonprotein amino acid al- 
loisoleucine was present. The ratio of 
alloisoleucine to isoleucine is about 0.05 
which is approximately the same ratio as 
found in fossil shells of comparable age 
(8). 

The Great Salt Lake oolites were 
serially dissolved to sample the outer 
and inner portions of the organic 
matrix. No significant differences in 
composition were detected. The second 
acid treatment of Great Salt Lake 
oolites exposed some nuclei, but they 
were composed entirely of mineral 
grains, mainly quartz. 

In addition to natural oolites, arti- 
ficial oolites, obtained from a water- 
processing plant in Homestead, Florida, 
were analyzed. In cross section they do 
not exhibit the concentric pattern of 
natural oolites and they do not contain 
any amino acids at the 10-10 mole level, 
either free or combined. Only natural 
oolites, therefore, appear to contain a 
proteinaceous matrix. 

Several attempts have been made to 
grow oolites in the laboratory under a 
variety of conditions (9). Evaporation of 
seawater, addition of excess carbonate, 
and bacterial cultures caused precipita- 
tion of CaCOa. These precipitates, how- 
ever, did not resemble natural oolites. 
Bacteria have also served as nuclei for 
precipitation of CaCO3 by concentrating 
calcium ions on their cell surface (10). 
There is no evidence that natural oolites 
formed in this manner. 

Most of the organic matrix in oolites 
consists of uncharacterized organic 
matter which appears to be distributed 
throughout the carbonate phase. Most 
investigators, whether supporting a 
physicochemical or biochemical origin, 
consider the matrix to be an algal 
product (4, 5), probably a cellular secre- 
tion which forms a coating on the oolite 
grain or nucleus. The presence of cal- 
careous algae as one of the very few 
proliferating organisms, and the only 
carbonate-precipitating organism, in the 
Great Salt Lake supports the view that 
algae are the source of the organic 
matter in oolites. Proponents of an in- 
organic origin consider this organic 
matter to be simply occluded or trapped 
in the growing oolite (11). As Chave 
(2) has noted, organic coatings on 
mineral grains may be a common oc- 
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CaCO3. Molluscan shells, bones, and 
other biological hard parts contain pro- 
tein as the substrate upon which the 
inorganic phase is formed (12). The 
organic matrix in these biochemical 
systems causes formation of the mineral 
either by concentrating the appropriate 
ions on charged sites on the protein or 
by providing a set of specific templates 
upon which the mineral nucleates. It 
has been suggested that the acidic amino 
acids in the protein of mineralized 
tissues are important in concentrating 
calcium because of their polar side 
groups (12). 

Artificial oolites, formed by physico- 
chemical precipitation, do not have an 
organic matrix. The presence in natural 
oolites of a proteinaceous matrix with a 
high concentration of acidic amino acids 
strongly suggests that the organic matter 
may influence the precipitation of 
CaCO3 by concentrating calcium ions 
and it may be a prerequisite to natural 
oolite formation. Calcareous algae are 
a possible source of the protein. Natural 
oolites do not appear to form simply as 
physicochemical precipitates. 

RICHARD M. MITTERER 
Geosciences Division, 
Southwest Center for Advanced Studies, 
Dallas, Texas 75230 
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Exact location of functional periph- 
eral chemoreceptors that influence res- 
piration in the bird is unknown despite 
the presence of tissue that appears to be 
similar to that in the mammalian 
carotid body (1). Chickens are, how- 
ever, acutely sensitive to changes in 
ventilatory CO2 (2), which suggests the 
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presence of C02-sensitive chemorecep- 
tive tissue. Furthermore, speed of the 
response suggests that the receptor site 
may be near or in the lungs. We, there- 
fore, attempted to locate the rapidly 
responding CO2-sensitive receptors. 

Mature, male, White Leghorn chick- 
ens, secured in dorsal recumbency, were 
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Table 1. Respiratory response to rapid reduction of Pco% in the respiratory system. The re- 
sponse time is a measure of the time between entry of CO2-free gas into the trachea and the 
first indication of an alteration in sternal movements. 

Conditions Response time Birds Trials 
(sec) (No.) (No.) 

Control 0.50 z? 0.20* 34 276 
Extracorporeal loops in brachiocephalic arteries 0.58 ? 0.22 6 127 
Extracorporeal loops in aorta 0.52 - 0.22 3 18 
Lung circulation occluded 0.64 ? 0.22 10 27 
Bronchi cannulated at lung hilus 0.47 ? 0.13 2 17 
Unilateral thoracic vagotomy 0.78 ? 0.32 15 51 
Bilateral thoracic vagotomy 4.5 ? 1.3 15 71 

* Mean ? standard deviation. 
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Receptors Sensitive to Carbon Dioxide in Lungs of Chicken 

Abstract. Receptors responsive to the removal of carbon dioxide from ventila- 
tory gas were demonstrated in the lungs of the chicken. Apnea was induced in 
0.64 second after rapid lowering of respired carbon dioxide in the absence of 
blood flow through the lungs. Afjerent impulses from the receptors are con- 
-ducted centrally in the vagi. 
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