
nian and Cretaceous could be somehow 
related to the phenomena that caused 
the longest and most persistent period 
of worldwide regressive seas during 
Late Permian, Triassic, and Jurassic. 
The only way to account for large tidal 
dissipation rates in pre-Pennsylvanian 
time, when the Atlantic was not yet 
formed, would be the presence of ex- 
tended shallow seas connected with 
the Pacific Ocean. Paleogeographic 
maps do show shallow seas along the 
rim of the Pacific in Asia and in the 
Americas. 

Other assumptions, as speculative as 
this of the slowing down due mainly 
to tidal dissipation in shallow. seas, can 
be made; but no matter what theory 
one likes best, the changes in slope 
must be related to events that pro- 
foundly affected the earth and that left 
other observable clues. The paleonto- 
logical evidence presented does show, 
however, that the deceleration rate has 
not been constant through time, and 
that, by using the growth patterns of 
organisms, it will be possible to shed 
light on events that affected the general 
distribution of oceans and continents 
in the past. 
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Pollen Grains in Lake Sediments: Redeposition 
Caused by Seasonal Water Circulation 

Abstract. Annual pollen deposition per unit area measured in sediment traps is 
two to four times greater than deposition measured in surface sediment cores. The 
difference is due to repeated redeposition of pollen from the sediment surface 
during seasons of water circulation. This process reduces variations in the per- 
centages of different pollen types in sediment, but causes differences in the total 
amount of pollen accumulated in various parts of the lake basin. 

Pollen Grains in Lake Sediments: Redeposition 
Caused by Seasonal Water Circulation 

Abstract. Annual pollen deposition per unit area measured in sediment traps is 
two to four times greater than deposition measured in surface sediment cores. The 
difference is due to repeated redeposition of pollen from the sediment surface 
during seasons of water circulation. This process reduces variations in the per- 
centages of different pollen types in sediment, but causes differences in the total 
amount of pollen accumulated in various parts of the lake basin. 

The numbers and kinds of pollen 
grains preserved in lake sediments de- 
pend on the surrounding terrestrial vege- 
tation. Consequently fossil pollen grains, 
in stratigraphic sequence, provide a 
vegetation record through time. Factors 
affecting distribution of pollen grains 
within lake basins are important to 
paleoecology. These factors could dis- 
tort the usual relation between vegeta- 
tion and pollen content of sediments. 

We have studied processes of sedi- 
mentation in lakes by measuring the 
deposition of pollen grains onto the 
lake bottom. This involves measuring 
not only deposition, but also resuspen- 
sion and redeposition. Pollen redepos- 
ited from the sediment surface and new 
pollen entering the lake from the air 
were measured separately, permitting 
assessment of the effect of the redeposi- 
tion process on distribution of pollen 
grains within the basin. 

The studies were done at Frains Lake, 
Washtenaw County, Michigan. Frains 
is approximately 200 m wide and 500 m 
long, with one symmetrical basin 10 m 
deep in the center. There are no sig- 
nificant inflowing or outflowing streams. 
The lake is surrounded by a gently 
rolling landscape, now largely under 
cultivation. Meadows are immediately 
adjacent to the lake. 

Two methods of measurement were 
used. The first measures net accumula- 
tion in the sediment. Short cores that 
include the mud-water interface and 
the uppermost 50 cm are taken, and 
they are divided into 2-cm segments 

The numbers and kinds of pollen 
grains preserved in lake sediments de- 
pend on the surrounding terrestrial vege- 
tation. Consequently fossil pollen grains, 
in stratigraphic sequence, provide a 
vegetation record through time. Factors 
affecting distribution of pollen grains 
within lake basins are important to 
paleoecology. These factors could dis- 
tort the usual relation between vegeta- 
tion and pollen content of sediments. 

We have studied processes of sedi- 
mentation in lakes by measuring the 
deposition of pollen grains onto the 
lake bottom. This involves measuring 
not only deposition, but also resuspen- 
sion and redeposition. Pollen redepos- 
ited from the sediment surface and new 
pollen entering the lake from the air 
were measured separately, permitting 
assessment of the effect of the redeposi- 
tion process on distribution of pollen 
grains within the basin. 

The studies were done at Frains Lake, 
Washtenaw County, Michigan. Frains 
is approximately 200 m wide and 500 m 
long, with one symmetrical basin 10 m 
deep in the center. There are no sig- 
nificant inflowing or outflowing streams. 
The lake is surrounded by a gently 
rolling landscape, now largely under 
cultivation. Meadows are immediately 
adjacent to the lake. 

Two methods of measurement were 
used. The first measures net accumula- 
tion in the sediment. Short cores that 
include the mud-water interface and 
the uppermost 50 cm are taken, and 
they are divided into 2-cm segments 

E 

10- 

4) 20- 

4) 30- 
'a 

E 

10- 

4) 20- 

4) 30- 
'a 

which are analyzed separately. From 
its pollen content, sediment deposited 
at the time of land settlement and forest 
clearance is identified. Around Frains 
Lake this occurred in 1830, 138 years 
ago. The change in vegetation cover re- 
sulted in a sharp decline in tree pollen, 
especially oak, and a sudden relative in- 
crease in pollen from weedy herbs. Rag- 
weed (Ambrosia) pollen was especially 
affected, increasing from less than 1 
percent to about 30 percent of the total 
(Fig. 1). 

After the time horizon is identified 
deposition since then can be measured. 
The number of pollen grains in the sedi- 
ment above the forest clearance horizon 
is determined by assaying quantitative 
portions of the sediment (1). The cross- 
sectional area of the core is known, 
and therefore pollen accumulation per 
square centimeter can be computed. 
Dividing by 138 years gives the estimate 
for average annual deposition of pollen 
grains per unit surface area since forest 
clearance. Pollen deposition rate has 
been measured in this manner at eight 
stations within Frains Lake. The rate 
was lowest (1200 grains per square 
centimeter per year) in sediment near 
shore deposited in water less than 1 m 
deep. Intermediate rates, 8,000 to 14,500 
grains per square centimeter per year, 
characterized stations at intermediate 
water depths, whereas the highest rate 
(21,000 grains per square centimeter 
per year) was observed in deep water 
near the center of the basin. 

In the second method pollen deposi- 
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401,Ao 

Fig. 1. Percentages of the major pollen types in samples from a short core from the 
sediment surface in Frains Lake. The dashed line at 25 cm has been drawn across the 
diagram at the forest clearance horizon, deposited 138 years ago. The percentages are 
plotted on the scale indicated for oak. 
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Fig. 1. Percentages of the major pollen types in samples from a short core from the 
sediment surface in Frains Lake. The dashed line at 25 cm has been drawn across the 
diagram at the forest clearance horizon, deposited 138 years ago. The percentages are 
plotted on the scale indicated for oak. 
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tion is measured directly in sediment 
traps-gallon bottles, with mouth area 
90 cm2, suspended in wire cages 2 m 
above the lake bottom between anchors 
and submerged floats (Fig. 2). A rope 
attached to the trap is picked up at 
shore and followed out to the trapping 
station, where the trap is lifted vertically 
to the surface and brought aboard a 
small boat. The sediment in the trap is 
seldom stirred up by this process. A new 
bottle is placed in the cage which is 
lowered gently to the lake bottom for 
continued sampling. 

At the laboratory the sediment in the 
trap is concentrated on a filter, prepared 
for pollen analysis, and assayed for 
pollen (2). Pollen deposition per unit 
area is calculated by dividing the esti- 
mated number of grains in the trap by 
the cross-sectional area of the trap 
mouth. This result is divided by the 
length of the sampling period, to obtain 
pollen deposition per unit area per unit 
time (3). 

Sediment traps have been used in 
Frains Lake over the past 3 years. The 
yearly rates of pollen deposition mea- 
sured in traps near the center of the 
lake range between 40,000 and 81,000 
grains per square centimeter per year. 
This is two to four times greater than 
the rate of accumulation measured in 
the sediment. 

The two methods of study gave differ- 
ent results. One explanation might be 
destruction and decay of pollen over a 
period of years, gradually removing pol- 
len from the sediment on the lake 
bottom. To test this idea I calculated 
the pollen content in a number of 
samples relative to the amount of in- 
organic sediment (measured as milli- 
gram of ash weight). Inorganic sediment 
here is largely silt and clay. If de- 
cay of pollen is occurring in long-term 
samples, the destruction should be de- 
tectable as a change in the numbers of 
pollen grains relative to the amount of 
inorganic sediment. To the contrary, the 
calculations showed no differences in 
the ratios of pollen grain numbers to 
ash weight in short-term and long-term 
samples. Trap samples collected con- 
tinuously during the last 2 and 3 years 
had 250 and 750 pollen grains per 
milligram of ash weight, respectively. 
Sediment core samples, including por- 
tions from the entire thickness of sedi- 
ment accumulated since forest clearance 
138 years ago, were similar, averaging 
650 pollen grains per milligram of ash 
weight (except the core from water 
< 1 m deep, where there were only 40 
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Fig. 2. Sediment trap. [Reproduced, with 
permission, from Bull. Geol. Soc. Amer. 
78, 850 (1967)] 

grains per milligram of ash weight). 
This result disproves the explanation 
that removal of pollen from sediment by 
diagenesis causes the lower accumula- 
tion rates measured in sediment cores. 

A second explanation for the dis- 
crepancy in trap and core results is 
erosion of pollen-bearing sediment from 
the lake bottom, resuspension in the lake 
water, and subsequent redeposition onto 
the lake bottom. If this occurred, the 
traps would measure each episode of 
deposition and redeposition, but none 
of the episodes of erosion, since the 
sediment once in a trap would be pro- 
tected. If the process occurred repeat- 
edly the traps could give quite different 

results from the net accumulation mea- 
sured in sediment cores. 

To test this hypothesis, deposition was 
measured in sediment traps for short in- 
tervals throughout the year. If erosion 
and redeposition occurred, it should 
happen most in the fall and in the spring 
when the thermocline breaks down and 
water circulation occurs (4). 

Sampling continued from August 
1965 through July 1966 (Fig. 3A). The 
lake water was thermally stratified dur- 
ing the summer; circulation first occur- 
red in late September or early October, 
continuing until January when the lake 
water froze over. The ice melted in 
late March, overturn and mixing again 
occurred, with thermal stratification de- 
veloping gradually in early summer. 

Pollen deposition occurred through- 
out the year, but varied in amount from 
one season to another. In July and Au- 
gust only five grains were deposited per 
square centimeter per day. During Feb- 
ruary similar rates were observed in 
traps hung below the ice. [The higher 
rate during the winter (Fig. 3A) is the 
average for a longer interval, from a 
trap that was in the lake for several 
weeks before a continuous winter ice 
cover formed.] Much higher rates, from 
200 to 1000 grains per square centi- 
meter per day, were observed during the 
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Fig. 3. (A) Pollen deposition rates (grains deposited per square centimeter per day) in 
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fall and spring. The high rates, in every 
case except June, were correlated with 
absence of thermal stratification of the 
lake water. 

Correlation of heavy pollen deposi- 
tion with water circulation implies that 
redeposited sediment is the source of 
much of the pollen in traps. Some pol- 
len must be entering the lake each year 
from the air. This pollen is also de- 
posited into the traps, where it is mixed 
with pollen redeposited from sediment. 
The question then is, how much of the 
pollen deposited into traps is from each 
source? 

Redeposited pollen includes all the 
pollen of types not observed in the air 
at that season (5), plus some pollen 
from in-season types redeposited from 
previous years. In the first category were 
ragweed pollen in the spring, and tree 
and shrub pollen in the autumn. Their 
amounts were used to estimate the 
amounts of pollen in the second, in- 
season category (Fig. 3B), by the use 
of the ratios between pollen types ob- 
served in late fall and winter when all 
(or most) pollen is redeposited. This as- 
sumes constancy of the ratios of pollen 
types within the redeposited component. 
The amount of redeposited pollen of 
both categories (Fig. 3B) was subtracted 
from the total, and the remainder was 
considered new input from the air (Fig. 
3C). New input is high in September, 
when ragweed is shedding pollen, and in 
May and June, when the trees, espe- 
cially oak, are in flower. An exception 
to correspondence with observations of 
pollen in the air is the influx of new 
pollen in November (Fig. 3C). Appar- 
ently this is an error resulting from 
small variations in the ratios of rede- 
posited types, perhaps caused by redepo- 
sition of sediment from different parts 
of the basin (6). 

A total of 65,000 grains per square 
centimeter was deposited into the traps 
during 1965-66. Of these 54,000 (about 
80 percent) are redeposited from sedi- 
ment, whereas only 11,000 or 20 per- 
cent represent new input to the lake. 

Presumably the amount of each com- 

ponent varies from year to year, de- 

pending upon the weather, which affects 
the intensity of water circulation during 
overturn, and the intensity of flowering 
of the vegetation. The estimated new 
input for 1965-66, 11,000 grains, cor- 
responds roughly to the average annual 
accumulation rate of pollen in deep 
water estimated from the sediment cores 
-8,000 to 21,000 grains per square 
centimeter. 
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Erosion, resuspension, and redeposi- 
tion of sediment are quantitatively im- 
portant in Frains Lake. Presumably re- 
deposition is important in other lakes 
as well, although basin morphometry, 
surrounding topography, and the pres- 
ence or absence of forest cover may 
affect its intensity. At Frains the ratio 
of deposition, as measured in traps, to 
net accumulation, as measured in sedi- 
ment cores, shows that pollen grains 
are deposited an average of two to 
four times before being buried deeply 
enough to escape further disturbance. 
This conclusion applies to the sedi- 
ment in the deepest portion of the 
basin. In shallow water near the lake 
shores disturbance is still more exten- 
sive. This interpretation is supported 
by studies of variation in pollen per- 
centage assemblages within the lake 
basin (7). These show that pollen per- 
centages in shallow water sediment 
most closely match the redeposition 
spectrum observed in traps near the lake 
center. 

After it is eroded, resuspended sedi- 
ment is mixed more or less evenly in 
the water and deposited again over the 
entire basin. Trap samples at different 
stations are generally similar, at Frains 
Lake and in three lakes studied previ- 
ously (3). At Frains, traps suspended at 
intervals between the water surface and 
sediment surface at three stations in the 
lake during spring overturn indicated 
evenness of vertical mixing in the water 
column, not only for pollen, but for 
organic and inorganic constituents of 
the sediment as well (8). Because sedi- 
ment in shallow water is apparently 
stirred up and resuspended more fre- 

quently or more extensively than sedi- 
ment in deep water, the net result of 
repeated resuspension, mainly from 
shallow water sediment, followed by re- 
deposition over the entire basin, is 
movement of material from shallow to 
deep water. This explains the difference 
in accumulation rates measured in sedi- 
ment cores in different parts of the 
basin. 

Redeposition has important implica- 
tions for pollen analysis of ancient sedi- 
ment. It results in accumulation of dif- 
ferent amounts of pollen in different 
parts of the basin. This must be taken 
into account when vegetation interpreta- 
tions are attempted for rates of pollen 
accumulation observed in the fossil 
record (9). A change in the intensity of 
redeposition could change rates of pol- 
len accumulation through time. An in- 
crease in intensity, for example, would 

increase the movement of sediment 
from shallow to deep water, lowering 
accumulation rates for all pollen types 
and for total sediment in shallow water, 
and increasing their rates of accumula- 
tion in deep water. 

Redeposition also affects pollen per- 
centage assemblages, the usual basis 
for paleoecological reconstructions. At 
Frains Lake pollen percentages in shal- 
low-water sediments differ from those 
in deep-water sediments. The differ- 
ences are apparently caused by differ- 
ential input of pollen. At least there is 
no evidence that sorting of pollen types 
according to their different settling 
rates occurs during resuspension and 
redeposition, since pollen percentages 
in traps during overturn are similar at 
different stations and at different levels 
in the water column. Since redeposition 
moves pollen from shallow-water en- 
vironments to deep-water environments, 
it will have the important effect of re- 
ducing the lateral variations in pollen 
percentages, thus making a single sedi- 
ment core more nearly representative 
of the entire basin. 

A final important result of redepo- 
sition is mixing of pollen entering the 
lake each year with pollen deposited in 
previous years. This reduces vertical 
variations in pollen content of the sedi- 
ment caused by annual variations in 
the intensity of flowering of the vari- 
ous plant species. As the result of the 
mixing brought about by redeposition, 
each sediment sample in a vertical pro- 
file represents a kind of running aver- 
age of several years' deposition, making 
it easy to discern long-term changes in 
pollen sequences (10). The process of 

redeposition may be largely responsible 
for the uniformity and consistency of 
pollen content that has made lake sedi- 
ment such favorable material for paleo- 
ecological study. 
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University of Michigan, Ann Arbor 
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Wedge Dislocation as the Elastic Counterpart 
of a Crystal Deformation Twin 

Abstract. A crystal deformation twin may be visualized to form and grow I 
the movement of partial dislocations only if the twinning dislocations a; 
especially distributed to give an invariant shear. One consequence of this requir 
ment is that, if a critical resolved twinning stress exists in the same sense f 
twinning as for slip, this stress depends on the reciprocal thickness of the twi 
This type of model for twinning may be developed through the use of relative 
unknown disclinations, in particular, the wedge dislocation. 
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these dislocations are produced may 1 
expressed as 

Aui : b + dij x ( 

where i,j --1,2,3; b1 is a polar vect, 
which specifies the relative translati 
of the surfaces; d+j is an axial vect 
which specifies their relative rotatio 
and xj is the position vector. Only tv 
of the three dislocations characteriz' 
by be, their Burgers vector, are uniqu 
and these, which are termed edge ai 
screw dislocations, are widely used 
theories of crystal plasticity. Only tv 
of the three dislocations specified 1 

dij, which are now called disclinatio 
corresponding to a rotation parallel 
normal to the dislocation line, are al 
unique. The screw disclination, or wed 
dislocation, is shown in Fig. 1. The 
dislocations have not been used ve 
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enclosed within the solid horizontal lines 
of the cylindrical section shown on the 
right side of the figure. The twin is 
composed of successively aligned dis- 

y locations, each having a partial lattice- 
re displacement vector b1 separated in the 
.e vertical direction by the interplanar 
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