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Measurement, Statistics, ai 
the Schemapiric Vic 

Like the faces of Janus, science loo 
two ways-toward schematics and empiri, 

S. S. Stev 

A curious antagonism has sometimes 
infected the relations between measure- 
ment and statistics. What ought to pro- 
ceed as a pact of mutual assistance has 
seemed to some authors to justify a 
feud that centers on the degree of in- 

dependence of the two domains. Thus 
Humphreys (1) dispenses praise to a 
textbook because its authors "do not 
follow the Stevens dictum concerning 
the precise relationships between scales 
of measurement and permissible statisti- 
cal operations." Since that dictum, so- 
called, lurks as the bete noire behind 

many recurrent complaints, there is 
need to reexamine its burden and to 
ask how measurement and statistics 

shape up in the scientific process-the 
schemapiric endeavor in which we in- 
vent schematic models to map empirical 
domains. 

In those disciplines where measure- 
ment is noisy, uncertain, and difficult, 
it is only natural that statistics should 
flourish. Of course, if there were no 
measurement at all, there would be no 
statistics. At the other extreme, if accu- 
rate measurement were achieved in 
every inquiry, many of the needs for 
statistics would vanish. Somewhere be- 
tween the two extremes of no measure- 
ment and perfect measurement, per- 
haps near the psychosocial-behavioral 

center of gravity, the rat 
ing to measuring reache 
And that is where we 
sensitivity to the sugg 
type of measurement 
experiment may set bour 
of statistics that will prc 

After reviewing the i 
(2) concluded that "the 
can hardly be cognizant 
cal meaning of the numl 
it deals. Consequently,' 
"the validity of the stati 
cannot depend on the t 
ing scale used." This 
may call it that, deman 
it compresses large issi 
phrases. Here let me 
that, however much we 
the statistical test cannc 
of the empirical meanir 
bers, the same privileg 
can scarcely be extenm 
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said, "I know of no i 
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something empirically useful is to 
emerge in the printout, something em- 

pirically meaningful must be pro- 
gramed for the input. nd Baker, Hardyck, and Petrinovich (4) 
summed up the distress: "If Stevens' 

iw^ ~ position is correct, it should be em- 

phasized more intensively; if it is in- 
correct, something should be done to 

iks alleviate the lingering feelings of guilt 
that plague research workers who de- 
liberately use statistics such as t on 
weak measurements." If it is true that 

rens guilt must come before repentance, per- 
haps the age of statistical indifference 
to the demands of measurement may be 

drawing to a close. Whatever the out- 
come, the foregoing samples of opinion 

tio of statisticiz- suggest that the relation between statis- 
;s its maximum. tics and measurement is not a settled 

find an acute issue. Nor is it a simple issue, for it 
estion that the exhibits both theoretical and practical 
achieved in an aspects. Moreover, peace is not likely 
ids on the kinds to be restored until both the principles 
)ve appropriate. and the pragmatics have been resolved. 
ssues Anderson 

statistical test 
t of the empiri- The Schemapiric Principle 
bers with which 
'he continued, Although measurement began in the 

istical inference empirical mode, with the accent on the 
ype of measur- counting of moons and paces and 
sequitur, if we warriors, it was destined in modern 
ds scrutiny, for times to find itself debated in the for- 
ues into a few mal, schematic, syntactical mode, where 
observe merely models can be made to bristle with 
may agree that symbols. Mathematics, which like logic 
)t be cognizant constitutes a formal endeavor, was not 
ig of the num- always regarded as an arbitrary con- 
e of ignorance struction devoid of substantive content, 
ded to experi- an adventure of postulate and theorem. 

In early ages mathematics and empirical 
:ian, Savage (3) measurement were as warp and woof, 
reason to limit interpenetrating each other so closely 
those involving that our ancestors thought it proper to 
consistent with prove arithmetic theorems by resort to 
f the observed counting or to some other act of 
in, like a com- measurement. The divorce took place 
gn indifference only in recent times. And mathematics 
abers that enter now enjoys full freedom to "play upon 
tation, but that symbols," as Gauss phrased it, with no 
y to be shared constraints imposed by the demands of 
an in the labo- empirical measurement. 
ispect that, if So also with other formal or sche- 
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matic systems. The propositions of a 
formal logic express tautologies that 

say nothing about the world of tangible 
stuff. They are analytic statements, so- 
called, and they stand apart from the 

synthetic statements that express facts 
and relations among empirical objects. 
There is a useful distinction to be made 
between the analytic, formal, syntactical 
propositions of logic and the synthetic, 
empirical statements of substantive dis- 
course. 

Sometimes the line may be hard to 
draw. Quine (5) the logician denies, in 
fact, that any sharp demarcation can 
be certified, and debate on the issue 
between him and Carnap has reached 
classic if unresolved proportions. For 
the scientist, meanwhile, the usefulness 
of the formal-empirical distinction need 
not be imperiled by the difficulty of 

making rigorous decisions in borderline 
cases. It is useful to distinguish between 

day and night despite the penumbral 
passage through twilight. So also is it 
useful to tune ourselves to distinguish 
between the formally schematic and the 
empirically substantive. 

Probability exhibits the same double 

aspect, the same schemapiric nature. 
Mathematical theories of probability in- 
habit the formal realm as analytic, 
tautologous, schematic systems, and 

they say nothing at all about dice, rou- 
lette, or lotteries. On the empirical level, 
however, we count and tabulate events 
at the gaming table or in the laboratory 
and note their relative frequencies. 
Sometimes the relative frequencies 
stand in isomorphic relation to some 

property of a mathematical model of 

probability; at other times the observed 
frequencies exhibit scant accord with 

"expectations." 
Those features of statistics that in- 

voke a probabilistic schema provide a 
further instance of a formal-empirical 
dichotomy: the distinction between the 

probability model and the statistical 
data. E. B. Wilson (6), mathematician 
and statistician, made the point "that 
one must distinguish critically between 

probability as a purely mathematical 

subject of one sort or another, and 
statistics which cannot be so regarded." 
Statistics, of course, is a young disci- 

pline-one whose voice changes depend- 
ing on who speaks for it. Many spokes- 
men would want to broaden the mean- 
ing of statistics to include a formal, 
mathematical segment. 

In another context N. R. Hanson (7) 
pressed a similar distinction when he 
said, "Mathematics and physics on this 
account seem logically different dis- 
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ciplines, such that the former can only 
occasionally solve the latter's prob- 
lems." Indeed, as Hanson later ex- 
claimed, "Physicists have in unison 
pronounced, 'Let no man join what 
nature hath sundered, namely, the 
formal creation of spaces and the phys- 
ical description of bodies.' " Yet it is 

precisely by way of the proper and 
judicious joining of the schematic with 
the empirical that we achieve our 
beneficial and effective mappings of the 
universe-the schemapiric mappings 
known as science. The chronic danger 
lies in our failure to note the distinction 
between the map and the terrain, be- 
tween the simulation and the simulated. 
The map is an analogue, a schema, a 
model, a theory. Each of those words 
has a separate flavor, but they all share 
a common core of meaning. "Contrary 
to general belief," wrote Simon and 
Newell (8), "there is no fundamental, 
'in principle,' difference between 
theories and analogies. All theories are 
analogies, and all analogies are 
theories." Indeed, the same can be said 
for all the other terms that designate 
the associative binding of schematics 
to empirics-what I have called the 
schemapiric bond. 

Scales and Invariance 

Although it could be otherwise if our 
choice dictated, most measurement in- 
volves the assignment of numbers to 
aspects of objects or events according 
to one or another rule or convention. 
The variety of rules invented thus far 
for the assignment of numbers has al- 
ready grown enormous, and novel 
means of measuring continue to emerge. 
It has proved possible, however, to 
formulate an invariance criterion for 
the classification of scales of measure- 
ment (9). The resulting systematization 
of scale types has found uses in con- 
texts ranging from physics (10) to the 
social sciences (11), but the conception 
has not enjoyed immunity from criti- 
cism (12). 

Let me sketch the theory. It can be 
done very briefly, because details are 

given in other places (13). The theory 
proposes that a scale type is defined by 
the group of transformations under 
which the scale form remains invariant, 
as follows. 

A nominal scale admits any one-to- 
one substitution of the assigned num- 
bers. Example of a nominal scale: the 
numbering of football players. 

An ordinal scale can be transformed 

by any increasing monotonic function. 
Example of an ordinal scale: the hard- 
ness scale determined by the ability of 
one mineral to scratch another. 

An interval scale can be subjected to 
a linear transformation. Examples of 
interval scales: temperature Fahrenheit 
and Celsius, calendar time, potential 
energy. 

A ratio scale admits only multipli- 
cation by a constant. Examples of ratio 
scales: length, weight, density, tempera- 
ture Kelvin, time intervals, loudness in 
sones. 

The foregoing scales represent the 
four types in common use. Other types 
are possible. The permissible transforma- 
tions defining a scale type are those that 
keep intact the empirical information 
depicted by the scale. If the empirical 
information has been preserved, the 
scale form is said to remain invariant. 
The critical isomorphism is maintained. 
That indeed is the principle of invari- 
ance that lies at the heart of the con- 
ception. More formal presentations of 
the foregoing theory have been under- 
taken by other authors, a recent one, 
for example, by Lea (14). 

Unfortunately, those who demand an 
abstract tidiness that is completely 
aseptic may demur at the thought that 
the decision whether a particular scale 
enjoys the privilege of a particular 
transformation group depends on some- 
thing so ill defined as the preservation 
of empirical information. For one thing, 
an empirical operation is always at- 
tended by error. Thus Lebesgue (15), 
who strove so well to perfect the con- 

cept of mathematical measure, took 
explicit note that, in the assignment of 
number to a physical magnitude, pre- 
cision can be pushed, as he said, "in 
actuality only up to a certain error. It 
never enables us," he continued, "to 
discriminate between one number and 
all the numbers that are extremely close 
to it." 

A second disconcerting feature of 
the invariance criterion lies in the diffi- 

culty of specifying the empirical in- 
formation that is to be preserved. What 
can it be other than the information 
that we think we have captured by 
creating the scale in the first place? We 

may, for example, perform operations 
that allow us simply to identify or dis- 
criminate a particular property of an 
object. Sometimes we want to preserve 
nothing more than that simple outcome, 
the identification or nominal classifica- 
tion of the items of interest. Or we may 
go further, provided our empirical 
operations permit, and determine rank 
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orders, equal intervals, or equal ratios. 
If we want our number assignments to 
reflect one or another accrual in in- 
formation, we are free to transform the 
scale numbers only in a way that does 
not lose or distort the desired informa- 
tion. The choice remains ours. 

Although some writers have found 
it possible to read an element of pre- 
scription-even proscription-into the 
invariance principle, as a systematizing 
device the principle contains no norma- 
tive force. It can be read more as a 
description of the obvious than as a 
directive. It says that, once an iso- 
morphism has been mapped out be- 
tween aspects of objects or events, on 
the one hand, and some one or more 
features of the number system, on the 
other hand, the isomorphism can be up- 
set by whatever transformations fail 
to preserve it. Precisely what is pre- 
served or not preserved in a particular 
circumstance depends upon the empiri- 
cal operations. Since actual day-to-day 
measurements range from muddled to 
meticulous, our ability to classify them 
in terms of scale type must range from 
hopelessly uncertain to relatively secure. 

The group invariance that defines a 
scale type serves in turn to delimit the 
statistical procedures that can be said 
to be appropriate to a given measure- 
ment scale (16). Examples of appropri- 
ate statistics are tabulated in Table 1. 
Under the permissible transformations 
of a measurement scale, some appropri- 
ate statistics remain invariant in value 
(example: the correlation coefficient r 
keeps its value under linear transforma- 
tions). Other statistics change value but 
refer to the same item or location (ex- 
ample: the median changes its value but 
continues to refer to mid-distribution 
under ordinal transformations). 

Reconciliation and New Problems 

Two developments may serve to ease 
the apprehension among those who 
may have felt threatened by a theory of 
measurement that seems to place 
bounds on our freedom to calculate. 
One is a clearer understanding of the 

bipartite, schemapiric nature of the 
scientific enterprise. When the issue 
concerns only the schema-when, for 

example, critical ratios are calculated 
for an assumed binomial distribution- 
then indeed it is purely a matter of re- 
lations within a mathematical model. 
Natural facts stand silent. Empirical 
considerations impose no constraints. 
When, however, the text asserts a rela- 
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Table 1. Examples of statistical measures appropriate to measurements made on various 
types of scales. The scale type is defined by the manner in which scale numbers can be 
transformed without the loss of empirical information. The statistical measures listed are 
those that remain invariant, as regards either value or reference, under the transformations 
allowed by the scale type. 

Scale Measures of Dispersion Association or Significance 
type location sperscorrelation tests 

Nominal Mode Information H Information Chi square 
transmitted Fisher's 
T exact test 

Ordinal Median Percentiles Rank correlation Sign test 
Run test 

Interval Arithmetic mean Standard Product-moment t test 
deviation correlation F test 

Average Correlation ratio 
deviation 

Ratio Geometric mean Percent 
variation 

Harmonic mean Decilog 
dispersion 

tion among such things as measured 
differences or variabilities, we have a 

right and an obligation to inquire 
about the operations that underlie the 
measurements. Those operations deter- 
mine, in turn, the type of scale 
achieved. 

The two-part schemapiric view was 

expressed by Hays (17) in a much- 

praised book: "If the statistical method 
involves the procedures of arithmetic 
used on numerical scores, then the 
numerical answer is formally correct. 
. . . The difficulty comes with the in- 

terpretation of these numbers back into 
statements about the real world. If 
nonsense is put into the mathematical 
system, nonsense is sure to come out." 

At the level of the formal model, 
then, statistical computations may pro- 
ceed as freely as in any other syntactical 
exercise, unimpeded by any material 
outcome of empirical measurement. 
Nor does measurement have a pre- 
sumptive voice in the creation of the 
statistical models themselves. As Hog- 
ben (18) said in his forthright dissection 
of statistical theory, "It is entirely de- 
fensible to formulate an axiomatic ap- 
proach to the theory of probability as 
an internally consistent set of proposi- 
tions, if one is content to leave to those 
in closer contact with reality the last 
word on the usefulness of the outcome." 
Both Hays and Hogben insist that the 
user of statistics, the man in the labora- 
tory, the maker of measurements, must 
decide the meaning of the numbers 
and their capacity to advance empirical 
inquiry. 

The second road to reconciliation 
winds through a region only partly ex- 
plored, a region wherein lies the prag- 
matic problem of appraising the wages 
of transgression. What is the degree of 

risk entailed when use is made of 
statistics that may be inappropriate in 
the strict sense that they fail the 
test of invariance under permissible 
scale transformations? Specifically, let 
us assume that a set of items can be 
set in rank order, but, by the operations 
thus far invented, distances between the 
items cannot be determined. We have 
an ordinal but not an interval scale. 
What happens then if interval-scale 
statistics are applied to the ordinally 
scaled items? Therein lies a question of 
first-rate substance and one that should 
be amenable to unemotional investiga- 
tion. It promises well that a few an- 
swers have already been forthcoming. 

First there is the oft-heeded counsel 
of common sense. In the averaging of 
test scores, says Mosteller (19), "It 
seems sensible to use the statistics ap- 
propriate to the type of scale I think I 
am near. In taking such action we may 
find the justification vague and fuzzy. 
One reason for this vagueness is that we 
have not yet studied enough about 
classes of scales, classes appropriate to 
real life measurement, with perhaps real 
life bias and error variance." 

How some of the vagueness of which 
Mosteller spoke can perhaps be re- 
moved is illustrated by the study of 
Abelson and Tukey (20) who showed 
how bounds may be determined for the 
risk involved when an interval-scale 
statistic is used with an ordinal scale. 
Specifically, they explored the effect on 
r2 of a game against nature in which 
nature does its best (or worst!) to mini- 
mize the value of r2. In this game of 
regression analysis, many interesting 
cases were explored, but, as the authors 
said, their methods need extension to 
other cases. They noted that we often 
know more about ordinal data than 
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mere rank order. We may have reason 
to believe, they said, "that the scale is 
no worse than mildly curvilinear, that 
Nature behaves smoothly in some 
sense." Indeed the continued use of 
parametric statistics with ordinal data 
rests on that belief, a belief sustained in 
large measure by the pragmatic useful- 
ness of the results achieved. 

In a more synthetic study than the 
foregoing analysis, Baker et al. (4) im- 
posed sets of monotonic transforma- 
tions on an assumed set of data, and 
calculated the effect on the t distribu- 
tion. The purpose was to compare 
distributions of t for data drawn from 
an equal-interval scale with distribu- 
tions of t for several types of assumed 
distortions of the equal intervals. By 
and large, the effects on the computed 
t distributions were not large, and the 
authors concluded "that strong statistics 
such as the t test are more than ade- 
quate to cope with weak [ordinal] 
measurements. .. ." It should be noted, 
however, that the values of t were 
affected by the nonlinear transforma- 
tions. As the authors said, "The corre- 
spondence between values of t based 
on the criterion unit interval scores and 
values of t based on [nonlinear] trans- 
formations decreases regularly and dra- 
matically . . . as the departure from 
linear transformations becomes more' 
extreme." 

Whatever the substantive outcome of 
such investigations may prove to be, 
they point the way to reconciliation 
through orderly inquiry. Debate gives 
way to calculation. The question is 
thereby made to turn, not on whether 
the measurement scale determines the 
choice of a statistical procedure, but 
on how and to what degree an inap- 
propriate statistic may lead to a deviant 
conclusion. The solution of such prob- 
lems may help to refurbish the com- 
plexion of measurement theory, which 
has been accused of proscribing those 
statistics that do not remain invariant 
under the transformations appropriate 
to a given scale. By spelling out the 
costs, we may convert the issue from 
a seeming proscription to a calculated 
risk. 

The type of measurement achieved is 
not, of course, the only consideration 
affecting the applicability of parametric 
statistics. Bradley is one of many 
scholars who have sifted the conse- 
quences of violating the assumptions 
that underlie some of the common 
parametric tests (21). As one outcome 
of his studies, Bradley concluded, "The 
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contention that, when its assumptions 
are violated, a parametric test is still 
to be preferred to a distribution-free 
test because it is 'more efficient' is 
therefore a monumental non sequitur. 
The point is not at all academic . . . 
violations in a test's assumptions may 
be attended by profound changes in its 
power." That conclusion is not without 
relevance to scales of measurement, for 
when ordinal data are forced into the 
equal-interval mold, parametric as- 
sumptions are apt to be violated. It is 
then that a so-called distribution-free 
statistic may prove more efficient than 
its parametric counterpart. 

Although better accommodation 
among certain of the contending statis- 
tical usages may be brought about by 
computer-aided studies, there remain 
many statistics that find their use only 
with specific kinds of scales. A single 
example may suffice. In a classic text- 
book, written with a captivating clarity, 
Peters and Van Voorhis (22) got hung 
up on a minor point concerning the 
procedure to be used in comparing 
variabilities. They noted that Karl Pear- 
son had proposed a measure called the 
coefficient of variation, which expresses 
the standard deviation as a percentage 
of the mean. The authors expressed 
doubts about its value, however, be- 
cause it tells "more about the extent to 
which the scores are padded by a dis- 
location of the zero point than it does 
about comparable variabilities." The 
examples and arguments given by the 
authors make it plain that the coefficient 
of variation has little business being 
used with what I have called interval 
scales. But since their book antedated 
my publication in 1946 of the defin- 
ing invariances for interval and ratio 
scales, Peters and Van Voorhis did 
not have a convenient way to state 
the relationship made explicit in Table 
1, namely, that the coefficient of varia- 
tion, being itself a ratio, calls for a 
ratio scale. 

Complexities and Pitfalls 

Concepts like relative variability have 
the virtue of being uncomplicated and 
easy for the scientist to grasp. They fit 
his idiom. But in the current statistics 
explosion, which showers the investi- 
gator with a dense fallout of new 
statistical models, the scientist is likely 
to lose the thread on many issues. It 
is then that the theory of measurement, 
with an anchor hooked fast in empiri- 

cal reality, may serve as a sanctuary 
against the turbulence of specialized 
abstraction. 

"As a mathematical discipline travels 
far from its empirical source," said von 
Neumann (23), "there is grave danger 
that the subject will develop along the 
line of least resistance, that the stream, 
so far from its source, will separate 
into a multitude of insignificant 
branches, and that the discipline will 
become a disorganized mass of details 
and complexities." He went on to say 
that, "After much 'abstract' inbreed- 
ing, a mathematical subject is in danger 
of degeneration. At the inception the 
style is usually classical; when it shows 
signs of becoming baroque, then the 
danger signal is up." 

There is a sense, one suspects, in 
which statistics needs measurement 
more than measurement needs statis- 
tics. R. A. Fisher alluded to that need 
in his discourse on the nature of prob- 
ability (24). "I am quite sure," he 
said, "it is only personal contact with 
the business of the improvement of 
natural knowledge in the natural sci- 
ences that is capable to keep straight 
the thought of mathematically-minded 
people who have to grope their way 
through the complex entanglements of 
error. .. ." 

And lest the physical sciences should 
seem immune to what Schwartz (25) 
called "the pernicious influence of 
mathematics," consider his diagnosis: 
"Thus, in its relations with science, 
mathematics depends on an intellec- 
tual effort outside of mathematics for 
the crucial specification of the approx- 
imation which mathematics is to take 
literally. Give a mathematician a sit- 
uation which is the least bit ill-defined 
-he will first of all make it well de- 
fined. Perhaps appropriately, but per- 
haps also inappropriately. . . . That 
form of wisdom which is the opposite 
of single-mindedness, the ability to keep 
many threads in hand, to draw for an 
argument from many disparate sources, 
is quite foreign to mathematics. . . . 
Quite typically, science leaps ahead and 
mathematics plods behind." 

Progress in statistics often follows a 
similar road from practice to prescrip- 
tion-from field trials to the formali- 
zation of principles. As Kruskal (26) 
said, "Theoretical study of a statistical 
procedure often comes after its intui- 
tive proposal and use." Unfortunately 
for the empirical concerns of the 
practitioners, however, there is, as 
Kruskal added, "almost no end to the 
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possible theoretical study of even the 
simplest procedure." So the discipline 
wanders far from its empirical source, 
and form loses sight of substance. 

Not only do the forward thrusts of 
science often precede the mopping-up 
campaigns of the mathematical schema 
builders, but measurement itself may 
often find implementation only after 
some basic conception has been voiced. 
Textbooks, those distilled artifices of 
science, like to picture scientific con- 
ceptions as built on measurement, but 
the working scientist is more apt to 
devise his measurements to suit his 
conceptions. As Kuhn (27) said, "The 
route from theory or law to measure- 
ment can almost never be travelled 
backwards. Numbers gathered without 
some knowledge of the regularity to be 
expected almost never speak for them- 
selves. Almost certainly they remain 
just numbers." Yet who would deny 
that some ears, more tuned to num- 
bers, may hear them speak in fresh 
and revealing ways? 

The intent here is not, of course, to 
affront the qualities of a discipline as 
useful as mathematics. Its virtues and 
power are too great to need extolling, 
but in power lies a certain danger. For 
mathematics, like a computer, obeys 
commands and asks no questions. It 
will process any input, however devoid 
of scientific sense, and it will bedeck 
in formulas both the meaningful and 
the absurd. In the behavioral sciences, 
where the discernment for nonsense is 
perhaps less sharply honed than in the 
physical sciences, the vigil must remain 
especially alert against the intrusion 
of a defective theory merely because 
it carries a mathematical visa. An ab- 
surdity in full formularized attire may 
be more seductive than an absurdity 
undressed. 

Distributions and Decisions 

The scientist often scales items, 
counts them, and plots their frequency 
distributions. He is sometimes interested 
in the form of such distributions. If 
his data have been obtained from 
measurements made on interval or 
ratio scales, the shape of the distribu- 
tion stays put (up to a scale factor) 
under those transformations that are 
permissible, namely, those that pre- 
serve the empirical information con- 
tained in the measurements. The 
principle seems straightforward. But 
what happens when the state of the art 
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can produce no more than a rank or- 
dering, and hence nothing better than 
an ordinal scale? The abscissa of the 
frequency distribution then loses its 
metric meaning and becomes like a 
rubber band, capable of all sorts of 
monotonic stretchings. With each non- 
linear transformation of the scale, the 
form of the distribution changes. There- 
upon the distribution loses structure, 
and we find it futile to ask whether 
the shape approximates a particular 
form, whether normal, rectangular, or 
whatever. 

Working on the formal level, the 
statistician may contrive a schematic 
model by first assuming a frequency 
function, or a distribution function, of 
one kind or another. At the abstract 
level of mathematical creation, there 
can, of course, be no quarrel with the 
statistician's approach to his task. The 
caution light turns on, however, as soon 
as the model is asked to mirror an 
empirical domain. We must then in- 
voke a set of semantic rules-coordi- 
nating definitions-in order to identify 
correspondences between model and 
reality. What shall we say about the 
frequency function f(x) when the 
problem before us allows only an or- 
dinal scale? Shall x be subject to a 
nonlinear transformation after f(x) 
has been specified? If so, what does 
the transformation do to the model and 
to the predictions it forecasts? 

The scientist has reason to feel that 
a statistical model that specifies the 
form of a canonical distribution be- 
comes uninterpretable when the empir- 
ical domain concerns only ordinal data. 
Yet many consumers of statistics seem 
to disregard what to others is a rather 
obvious and critical problem. Thus 
Burke (28) proposed to draw "two 
random samples from populations 
known to be normal" and then "to 
test the hypothesis that the two popula- 
tions have the same mean . . . under 
the assumption that the scale is ordinal 
at best." How, we must ask, can nor- 
mality be known when only order can 
be certified? 

The assumption of normality is re- 
peated so blithely and so often that it 
becomes a kind of incantation. If 
enough of us sin, perhaps transgres- 
sion becomes a virtue. But in the in- 
stance before us, where the numbers 
to be fed into the statistical mill result 
from operations that allow only a rank 
ordering, maybe we have gone too far. 
Consider a permissible transformation. 
Let us cube all the numbers. The rank 

order would stand as before. But what 
do we then say about normality? If 
we can know nothing about the inter- 
vals on the scale of a variable, the 
postulation that a distribution has a 
particular form would appear to pro- 
claim a hope, not a circumstance. 

The assertion that a variable is nor- 
mally distributed when the variable is 
amenable only to ordinal measurement 
may loom as an acute contradiction, 
but it qualifies as neither the worst nor 
the most frequent infraction by some 
of the practitioners of hypothesis test- 
ing. Scientific decision by statistical 
calculation has become the common 
mode in many behavioral disciplines. 
In six psychological journals (29), for 
example, the proportion of articles that 
employed one or another kind of in- 
ferential statistic rose steadily from 56 
percent in 1948 to 91 percent in 1962. 
In the Journal of Educational Psychol- 
ogy the proportion rose from 36 to 
100 percent. 

What does it mean? Can no one 
recognize a decisive result without a 
significance test? How much can the 
burgeoning of computation be blamed 
on fad? How often does inferential 
computation serve as a premature ex- 
cuse for going to press? Whether the 
scholar has discovered something or 
not, he can sometimes subject his data 
to an analysis of variance, a t test, or 
some other device that will produce a 
so-called objective measure of "signif- 
icance." The illusion of objectivity 
seems to preserve itself despite the ad- 
mitted necessity for the investigator to 
make improbable assumptions, and to 
pluck off the top of his head a figure 
for the level of probability that he will 
consider significant. His argument that 
convention has already chosen the 
level that he will use does not quite 
absolve him. 

Lubin (30) has a name for those 
who censure the computational and 
applaud the experimental in the search 
for scientific certainty. He calls them 
stochastophobes. An apt title, if ap- 
plied to those whose eagerness to lay 
hold on the natural fact may generate 
impatience at the gratuitous processing 
of data. The extreme stochastophobe 
is likely to ask: What scientific dis- 
coveries owe their existence to the 
techniques of statistical analysis or 
inference? If exercises in statistical in- 
ference have occasioned few instances 
of a scientific breakthrough, the sto- 
chastophobe may want to ask by what 
magical view the stochastophile per- 
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ceives glamour in statistics. The charm 
may stem in part from the prestige that 
mathematics, however inapposite, con- 
fers on those who display the dexterity 
of calculation. For some stochasto- 
philes the appeal may have no deeper 
roots than a preference for the pru- 
dent posture at a desk as opposed to 
the harsher, more venturesome stance 
in the field or the laboratory. 

The aspersions voiced by stochasto- 
phobes fall mainly on those scientists 
who seem, by the surfeit of their sta- 
tistical chants, to turn data treatment 
into hierurgy. These are not the stat- 
isticians themselves, for they see 
statistics for what it is, a straightfor- 
ward discipline designed to amplify the 
power of common sense in the dis- 
cernment of order amid complexity. 
By showing how to amend the mis- 
match in the impedance between ques- 
tion and evidence, the statistician im- 
proves the probability that our exper- 
iments will speak with greater clarity. 
And by weighing the entailments of 
relevant assumptions, he shows us how 
to milk the most from some of those 
fortuitous experiments that nature per- 
forms once and may never perform 
again. The stochastophobe should find 
no quarrel here. Rather he should turn 
his despair into a hope that the problem 
of the relevance of this or that statisti- 
cal model may lead the research man 
toward thoughtful inquiry, not to a 
:reflex decision based on a burst of 
computation. 

Measurement 

If the vehemence of the debate that 
centers on the nature and conditions 
of statistical inference has hinted at 
the vulnerability of the conception, 
what can be said about the other 
partner in the enterprise? Is the theory 
of measurement a settled matter? Ap- 
parently not, for it remains a topic of 
trenchant inquiry, not yet ready to rest 
its case. And debate continues. 

The typical scientist pays little at- 
tention to the theory of measurement, 
and with good reason, for the labora- 
tory procedures for most measurements 
have been well worked out, and the 
scientist knows how to read his dials. 
Most of his variables are measured on 
well-defined, well-instrumented ratio 
scales. 

Among those whose interests center 
on variables that are not reducible to 
meter readings, however, the concern 
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with measurement stays acute. How, 
for example, shall we measure subjec- 
tive value (what the economist calls 
utility), or perceived brightness, or the 
seriousness of crimes? Those are some 
of the substantive problems that have 
forced a revision in our approach to 
measurement. They have entailed a 
loosening of the restricted view be- 
queathed us by the tradition of Helm- 
holtz and Campbell-the view that the 
axioms of additivity must govern what 
we call measurement (31). As a re- 
lated development, new axiomatic sys- 
tems have appeared, including axioms 
by Luce and Tukey (32) for a novel 
"conjoint" approach to fundamental 
measurement. But the purpose here is 
not to survey the formal, schematic 
models that have flowered in the various 
sciences, for the practice and concep- 
tion of measurement has as yet been 
little influenced by them. 

As with many syntactical develop- 
ments, measurement models sometimes 
drift off into the vacuum of abstraction 
and become decoupled from their con- 
crete reference. Even those authors who 
freely admit the empirical features as 
partners in the formulation of measure- 
ment may find themselves seeming to 
downgrade the empirical in favor of 
the formal. Thus we find Suppes and 
Zinnes (33) saying, "Some writers . . . 
appear to define scales in terms of the 
existence of certain empirical opera- 
tions. . . . In the present formulation 
of scale type, no mention is made of 
the kinds of 'direct' observations or 
empirical relations that exist. . . . Pre- 
cisely what empirical operations are in- 
volved in the empirical system is of no 
consequence." 

How then do we distinguish dif- 
ferent types of scales? How, in partic- 
ular, do we know whether a given scale 
belongs among the interval scales? 
Suppes and Zinnes gave what I think 
is a proper answer: "We ask if all 
the admissible numerical assignments 
are related by a linear transformation." 
That, however, is not a complete an- 
swer. There remains a further ques- 
tion: What is it that makes a class of 
numerical assignments admissible? A 
full theory of measurement cannot 
detach itself from the empirical sub- 
strate that gives it meaning. But the 
theorist grows impatient with the em- 
pirical lumps that ruffle the fine lami- 
nar flow within his models just as the 
laboratory fellow may disdain the arid 
swirls of hieroglyphics that pose as 
paradigms of his measurements. 

Although a congenial conciliation 
between those two polar temperaments, 
the modeler and the measurer, may lie 
beyond reasonable expectations, a tem- 
pering detente may prove viable. The 
two components of schemapirics must 
both be accredited, each in its own im- 
perative role. To the understanding of 
the world about us, neither the formal 
model nor the concrete measure is 
dispensable. 

Matching and Mapping 

Instead of starting with origins, 
many accounts of measurement begin 
with one or another advanced state of 
the measuring process, a state in which 
units and metrics can be taken for 
granted. At that level, the topic already 
has the crust of convention upon it, 
obscuring the deeper problems related 
to its nature. 

If we try to push the problem of 
measurement back closer to its primor- 
dial operations, we find, I think, that 
the basic operation is always a process 
of matching. That statement may sound 
innocent enough, but it contains a use- 
ful prescription. It suggests, for exam- 

ple, that if you would understand the 
essence of a given measuring proce- 
dure, you should ask what was matched 
to what. If the query leads to a pointer 
reading, do not stop there; ask the 
same question about the calibration 
procedure that was applied to the in- 
struments anterior to the pointer: What 
was matched to what? Diligent pur- 
suit of that question along the chain 
of measuring operations leads to some 
of the elemental operations of science. 

Or we may start nearer the pri- 
mordium. The sketchiness of the rec- 
ord forces us to conjecture the earliest 
history, but quite probably our fore- 
father kept score on the numerosity of 
his possessions with the aid of piles of 
pebbles [Latin: calculi] or by means of 
some other tallying device. He paired 
off items against pebbles by means of 
a primitive matching operation, and 
he thereby measured his hoard. 

Let us pause at this point to con- 
sider the preceding clause. Can the an- 
cestor in question be said to have mea- 
sured his possessions if he had no num- 
ber system? Not if we insist on taking 
literally the definition often given, 
namely, that measurement is the as- 
signment of numbers to objects or 
events according to rule. This defini- 
tion serves a good purpose in many 
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contexts, but it presumes a stage of 
development beyond the one that we 
are now seeking to probe. In an ele- 
mental sense, the matching or assign- 
ing of numbers is a sufficient but not a 
necessary condition for measurement, 
for other kinds of matching may give 
measures. 

Numbers presumably arose after our 
ancestor invented names for the col- 
lection of pebbles, or perhaps for the 
more convenient collections, the fingers. 
He could then match name to collec- 
tion, and collection to possessions. That 
gave him a method of counting, for, 
by pairing off each item against a finger 
name in an order decided upon, the 
name of the collection of items, and 
hence the numerosity of the items, was 
specified. 

The matching principle leads to the 
concept of cardinality. Two sets have 
the same cardinal number if they can 
be paired off in one-to-one relation to 
each other. By itself, this cardinal pair- 
ing off says nothing about order. (Dic- 
tionaries often disagree with the mathe- 
maticians on the definition of cardi- 
nality, but the mathematical usage rec- 
ommends itself here.) We find the 
cardinal principle embodied in the sym- 
bols used for the numerals in many 
forms of writing. Thus the Roman 
numeral VI pictures a hand V and a 
finger I. 

Let us return again to our central 
question. In the early cardinal proce- 
dure of matching item to item, fingers 
to items, or names to items, at what 
point shall we say that measurement 
began? Perhaps we had best not seek 
a line of demarcation between measure- 
ment and matching. It may be better to 
go all the way and propose an un- 
stinted definition as follows: Measure- 
ment is the matching of an aspect of 
one domain to an aspect of another. 

The operation of matching eventu- 
ates, of course, in one domain's being 
mapped into another, as regards one or 
more attributes of the two domains. 
In the larger sense, then, whenever a 
feature of one domain is mapped iso- 
morphically in some relation with a 
feature of another domain, measure- 
ment is achieved. The relation is po- 
tentially symmetrical. Our hypotheti- 
cal forefather could measure his 
collection of fish by means of his pile 
of pebbles, or his pile of pebbles by 
means of his collection of fish. 

Our contemporary concern lies not, 
of course, with pebbles and fish, but 
with a principle. We need to break the 
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Fig. 1. Equal-sensation function for cross-modality matching between loudness and 
vibration. The squares indicate that the observers adjusted the intensity of vibration 
on the fingertip to match the loudness of a noise delivered by earphones. The circles 
indicate that the observers adjusted the loudness to match the vibration. Each point 
is the decibel average of 20 matches, two by each of ten observers. Since the co- 
ordinates are logarithmic, the straight line indicates a power function. 

hull that confines the custom of our 
thought about these matters. The con- 
cern is more than merely academic, 
however, especially in the field of psy- 
chophysics. One justification for the 
enlarged view of measurement lies in 
a development in sensory measurement 
known as cross-modality matching (34). 
In a suitable laboratory setup, the sub- 
ject is asked, for example, to adjust 
the loudness of a sound applied to his 
ears in order to make it seem equal to 
the perceived strength of a vibration 
applied to his finger. The amplitude of 
the vibration is then changed and the 
matching process is repeated. An equal 
sensation function is thereby mapped 
out, as illustrated in Fig. 1. Loudness 
has been matched in that manner to 
ranges of values on some ten other 
perceptual continua, always with the 
result that the matching function ap- 
proximates a power function (35). In 
other words, in order to produce equal 
apparent intensity, the amplitude of 
the sound p must be a power function 
of the amplitude of the vibration a, 
or p =ab, where b is the exponent. Or, 
more simply, the logarithms of the 
stimuli are linearly related, which 
means that ratios of stimuli are pro- 
portional. 

Experiments suggest that the power 
function obtains between all pairs of 
intensive perceptual continua, and that 
the matchings exhibit a strong degree of 
transitivity in the sense that the ex- 

ponents form an interconnected net. If 
two matching functions have one con- 
tinuum in common, we can predict 
fairly well the exponent of the match- 
ing function between the other two 
continua. 

Now, once we have mapped out the 
matching function between loudness 
and vibration, we can, if we choose, 
measure the subjective strength of the 
vibration in terms of its equivalent 
loudness. Or, more generally, if all 
pairs of continua have been matched, 
we can select any one continuum to 
serve as the reference continuum in 
terms of which we then measure the 
subjective magnitude on each of the 
other continua. 

In the description of a measurement 
system that rests on cross-modality 
matching, no mention has been made 
of numbers. If we are willing to start 
from scratch in a measurement of this 
kind, numbers can in principle be dis- 
pensed with. They would, to be sure, 
have practical uses in the conduct of 
the experiments, but by using other 
signs or tokens to identify the stimuli 
we could presumably eliminate numbers 
completely. It would be a tour de force, 
no doubt, but an instructive one. 

Instead of dispensing with numbers, 
the practice in many psychophysical 
studies has been to treat numbers as 
one of the perceptual continua in the 
cross-modality matching experiment. 
Thus in what has come to be known 
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as the method of magnitude estima- 
tion, numbers are matched to loudness, 
say. In the reverse procedure, called 
magnitude production, the subject ad- 
justs the loudness to match a series of 
numbers given by the experimenter 
(36). And as might be expected, despite 
all the other kinds of cross-modality 
matches that have been made, it is the 
number continuum that most authors 
select as the reference continuum (ex- 
ponent = 1.0) in terms of which the 
exponent values for the other percep- 
tual continua are stated. But the point 
deserves to be stressed: the choice of 
number as the reference continuum is 
wholly arbitrary, albeit eminently con- 
venient. 

Summary 

Back in the days when measurement 
meant mainly counting, and statistics 
meant mainly the inventory of the state, 
the simple descriptive procedures of 
enumeration and averaging occasioned 
minimum conflict between measure- 
ment and statistics. But as measure- 
ment pushed on into novel behavioral 
domains, and statistics turned to the 
formalizing of stochastic models, the 
one-time intimate relation between the 
two activities dissolved into occasional 
misunderstanding. Measurement and 
statistics must live in peace, however, 
for both must participate in the sche- 
mapiric enterprise by which the sche- 
matic model is made to map the em- 
pirical observation. 

Science presents itself as a two-faced, 
bipartite endeavor looking at once to- 
ward the formal, analytic, schematic 
features of model-building, and toward 
the concrete, empirical, experiential ob- 
servations by which we test the useful- 
ness of a particular representation. 
Schematics and empirics are both es- 
sential to science, and full understand- 
ing demands that we know which is 
which. 

Measurement provides the numbers 
that enter the statistical table. But the 
numbers that issue from measurements 
have strings attached, for they carry 
the imprint of the operations by which 
they were obtained. Some transforma- 
tions on the numbers will leave intact 
the information gained by the measure- 
ments; other transformations will de- 
stroy the desired isomorphism between 
the measurement scale and the property 

assessed. Scales of measurement there- 
fore find a useful classification on the 
basis of a principle of invariance: each 
of the common scale types (nominal, 
ordinal, interval, and ratio) is defined 
by a group of transformations that 
leaves a particular isomorphism unim- 
paired. 

Since the transformations allowed 
by a given scale type will alter the 
numbers that enter into a statistical 
procedure, the procedure ought proper- 
ly to be one that can withstand that 
particular kind of number alteration. 
Therein lies the primacy of measure- 
ment: it sets bounds on the appropri- 
ateness of statistical operations. The 
widespread use on ordinal scales of 
statistics appropriate only to interval 
or ratio scales can be said to violate 
a technical canon, but in many in- 
stances the outcome has demonstrable 
utility. A few workers have begun to 
assess the degree of risk entailed by the 
use of statistics that do not remain in- 
variant under the permissible scale 
transformations. 

The view is proposed that measure- 
ment can be most liberally construed 
as the process of matching elements of 
one domain to those of another do- 
main. In most kinds of measurement 
we match numbers to objects or events, 
but other matchings have been found 
to serve a useful purpose. The cross- 
modality matching of one sensory con- 
tinuum to another has shown that sen- 
sory intensity increases as the stimu- 
lus intensity raised to a power. The 
generality of that finding supports a 
psychophysical law expressible as a 
simple invariance: equal stimulus ratios 
produce equal sensation ratios. 
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