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Table 1. Superconducting, antiferromagnetic, 
and ferromagnetic transitions of hexa- and 
dodecaborides. X-ray diffraction data for 
hexaborides sometimes showed small amounts 
of tetra- and dodecaborides. For T.s (super- 
conductivity), sharp transitions S 0.1?K wide 
were observed at 16 kc/sec unless otherwise 
indicated. Neel transitions identified by the 
abrupt decrease in resistivity as discussed in 
the text are given in column R; those identi- 
fied by an abrupt decrease in susceptibility 
(measured by an inductive method at 25 cycle 
sec-1) are given in column X. 

Com- Tsc TNeel (OK) Tcurie 
pound (?K) R X (?K) 

ScB,, 0.39 
YB6 6.5-7.1 
YBt?* 4.7 
ZrB1i 5.82 
LaB,* 5.7 
CeB, 3.0 3.0 
PrB, 7 
NdB, 8.6 8.6 
EuB6 8 
GdB, 17.6 17.5 
TbB, 23 >3 
DyB, 21.5 21 
HoB, 9 
HoBla 6.5 
ErB2, 6.5 
TmB, 4.2 
LuB,, 0.48 
ThB, 0.74 
* Incomplete superconductive transitions indi- 
cate that not all the sample was superconduct- 
ing. 
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most transition-metal compounds. There 
is even a slight resemblance between the 
the antiferromagnetic and the supercon- 
ducting transitions. At or below the 
Neel point, the electric resistivity drops 
abruptly, a feature which recently, in 
the case of NdB6, may have been mis- 
taken for superconductivity itself (1). 
Antiferromagnetism and a not quite so 
drastic drop in resistivity have been 
found previously for GdB6 by Coles (2). 
We have found similar behavior for all 

magnetic rare-earth compounds investi- 
gated except the EuB6 (Table 1), where- 
as all corresponding nonmagnetic rare- 
earth compounds become superconduct- 
ing. The nonmagnetic tetraborides, 
which are equally good metallic con- 
ductors, showed no superconducting 
transition above 0.35?K. 

Specific heat data have been ob- 
tained for both YB6 and ZrB12. The 

expected anomalies associated with the 
transition into the superconducting 
state were observed for both com- 

pounds. The very sharp transition ob- 
served for ZrB12 is shown in Fig. 1. 
The extrapolated electronic heat ca- 

pacity coefficient per mole of ZrB12 
(13.55 X 10-4 calories mole-1 deg-2) 
is almost exactly twice that found for 
one mole of YB6. Consequently, both 

compounds have the same value of 

slightly over 1 X 10-4 calories deg-2 
per gram atom of boron. 

The compounds described are, from 
an atomistic point of view, mostly 
boron. It was therefore tempting to con- 
sider the above results as indicative of 
the behavior of a hypothetical cubic 
boron lattice which is metallic. The 
aforementioned properties exist only 
when we have three-dimensional cubic 

arrays, which are characteristic of the 
hexa- and dodecaborides. 

The tetraborides being tetragonal are 

structurally intermediate between the 
two-dimensional MB2 and the three- 
dimensional MB6 arrangement (3). They 
no longer show any superconducting 
transitions a,bove 0.35?K. The absence 
of superconducting transitions in one- 
and two-dimensional lattices has been 

pointed out earlier for covalent borides 
(4) and the graphite intercalation com- 
pounds (5). The existence of supercon- 
ductivity found only in the hexa- and 
dodecaborides again confirms the valid- 

ity of the empirical result that supercon- 

most transition-metal compounds. There 
is even a slight resemblance between the 
the antiferromagnetic and the supercon- 
ducting transitions. At or below the 
Neel point, the electric resistivity drops 
abruptly, a feature which recently, in 
the case of NdB6, may have been mis- 
taken for superconductivity itself (1). 
Antiferromagnetism and a not quite so 
drastic drop in resistivity have been 
found previously for GdB6 by Coles (2). 
We have found similar behavior for all 

magnetic rare-earth compounds investi- 
gated except the EuB6 (Table 1), where- 
as all corresponding nonmagnetic rare- 
earth compounds become superconduct- 
ing. The nonmagnetic tetraborides, 
which are equally good metallic con- 
ductors, showed no superconducting 
transition above 0.35?K. 

Specific heat data have been ob- 
tained for both YB6 and ZrB12. The 

expected anomalies associated with the 
transition into the superconducting 
state were observed for both com- 

pounds. The very sharp transition ob- 
served for ZrB12 is shown in Fig. 1. 
The extrapolated electronic heat ca- 

pacity coefficient per mole of ZrB12 
(13.55 X 10-4 calories mole-1 deg-2) 
is almost exactly twice that found for 
one mole of YB6. Consequently, both 

compounds have the same value of 

slightly over 1 X 10-4 calories deg-2 
per gram atom of boron. 

The compounds described are, from 
an atomistic point of view, mostly 
boron. It was therefore tempting to con- 
sider the above results as indicative of 
the behavior of a hypothetical cubic 
boron lattice which is metallic. The 
aforementioned properties exist only 
when we have three-dimensional cubic 

arrays, which are characteristic of the 
hexa- and dodecaborides. 

The tetraborides being tetragonal are 

structurally intermediate between the 
two-dimensional MB2 and the three- 
dimensional MB6 arrangement (3). They 
no longer show any superconducting 
transitions a,bove 0.35?K. The absence 
of superconducting transitions in one- 
and two-dimensional lattices has been 

pointed out earlier for covalent borides 
(4) and the graphite intercalation com- 
pounds (5). The existence of supercon- 
ductivity found only in the hexa- and 
dodecaborides again confirms the valid- 

ity of the empirical result that supercon- 
ductivity exists only in three-dimen- 
sional structures. 

A certain formal analogy exists be- 
tween these borides and the beryllides. 
The formulas of the latter range from 
MBe12 to MBe22, M being almost any 

ductivity exists only in three-dimen- 
sional structures. 

A certain formal analogy exists be- 
tween these borides and the beryllides. 
The formulas of the latter range from 
MBe12 to MBe22, M being almost any 

40.0 O 40.0 O 

35.0 O 35.0 O 

a, 30.0 

E 

25.0 

i 20.0 
Zo 

c 15.0 

10.0 

a, 30.0 

E 

25.0 

i 20.0 
Zo 

c 15.0 

10.0 

5.0o 5.0o 

T2 (K2 ) 

Fig. 1. Specific heat as a function of 
temperature for ZrBi2. 

transition element. Most of the MBe22 
compounds, if not all, also exhibit su- 
perconductivity (6), which might be 
considered typical for the Ibody-centered 
cubic phase of beryllium (7). The elec- 
tronic specific heat of these Be com- 
pounds is very low and in the order of 
0.1 X 10-4 calories per gram atom of 
Be, whereas for the hexa, and dodec- 
aborides it is an order of magnitude 
higher. Thus we conclude that cubic 
metallic boron, should it ever come into 
existence, would have an appreciable 
electronic specific heat. 
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