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toses that had only about one eighth 
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probably fourth mitoses (although we 
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domly. Our results demonstrate that 
in the case of V. faba and P. tridactylis 
chromatids do segregate randomly at 
mitosis. 
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Neurosecretory cells are well known 
from the free-living flatworms (1), 
and their presence in cestodes has been 

suggested on the basis of evidence from 
the electron miscroscope (2). Using the 

paraldehyde-fuchsin technique of Cam- 
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eron and Steele (3), we have demon- 
strated neurosecretory cells in the 
scolex of the tapeworm Hymenolepis 
diminuta. The tapeworms were reared 

by feeding cysticercoids recovered from 
adult flour beetles (Tribolium confu- 
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adult flour beetles (Tribolium confu- 

Fig. 1. Horizontal section of Hymenolepis 18 days after infection, showing neuro- 
secretory cells with secretion granules (arrow) in the axons, and points of exit (e) 
of nerve tract (n) through rostellar capsule (c) (X 11,000). Fig. 2. Similar 
section showing neurosecretory cells in a worm 7 days after infection. Note swollen 
appearance of cells with abundant secretion (X 1400). 
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Neurosecretory Cells in a Cestode, Hymenolepis diminuta 

Abstract. A group of nerve cells in the rostellum become progressively more 

fuchsinophilic during the first 16 days of development; they then release their secre- 

tion into their axons at about the time that the first proglottid is released. 
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sum) to white rats. Developing worms 
were recovered from rat intestines at 

daily intervals from 2 to 22 days after 
infection, and at less regular intervals 
thereafter. 

The cells described here are located 
in a cluster in the rostellum. Their 
axons enter a nerve tract within the 
rostellum. This nerve tract is connected 
to nerves which lead to the lateral gan- 
glia of the central nervous system 
(Fig. 1). 

The bipolar cells contain abundant 
material which stains heavily with par- 
aldehyde-fuchsin (Fig. 2). Anteriorly, 
the cells are prolonged into filaments, a 
characteristic of sensory cells in ces- 
todes (2). This finding suggests that 
these cells are sensory, as has been de- 
cribed for neurosecretory cells in a 

parasitic nematode (4). 
The cells undergo a cycle of secretion 

associated with development of the 
adult tapeworm. The cells can be recog- 
nized in the cysticercoid, but they are 
entirely devoid of fuchsinophilic ma- 
terial. Fuchsinophilia develops in worms 
3 days after infection and rapidly be- 
comes maximum (Fig. 2). This devel- 

opment is associated with an increase 
in the size of the cells. Granules of 
fuchsinophilic material first become ob- 
vious in axons of worms fixed 16 to 
18 days after infection (Fig. 1). At the 
same time, the amount of fuchsino- 
philic material in the cells begins to 
decrease, and, by 40 days, the cells 
again fail to display fuchsinophilia. 

It is impossible to assign a precise 
function to these cells on the basis of 
these studies. However, the release of 
neurosecretion as evidenced by the first 
appearance of fuchsinophilia in the 
axons is correlated quite closely with 
the shedding of the first proglottid, an 
event which occurs 16 to 17 days after 
infection. On the other hand, fuchsino- 
philia in the neurosecretory cells first 
appears just before the time that strob- 
ilization begins. 
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Colostral Immunoglobulin-A: 
Synthesis in vitro of T-Chain by 
Rabbit Mammary Gland 

Abstract. When minced mammary 
tissue from lactating rabbits was in- 
cubated in vitro with CBl-labeled lysine 
and isoleucine, it incorporated radio- 
activity into colostral immunoglobulin 
A. The only portion of this colostral 
molecule with significant labeling was T- 
chain, with little or no labeling of light 
or heavy chains. It was thus demonstrat- 
ed that T-chains are synthesized by 
mammary gland. Because the remainder 
of the molecule was derived from tin- 
labeled material, in vivo it was prob- 
ably derived from serum. 

Colostrum, saliva, and certain other 
external secretions are rich in immuno- 
globulin A (yA), an immunoglobulin 
usually present only in low concentra- 
tions in serum. It has been established 
that secretory yA differs from serum 

,/A and from other immunoglobulins 
in that the molecule contains, in addi- 
tion to the usual light and heavy chains, 
a third kind of polypeptide called "T- 
chains." In man, the existence of an 
additional chain has been deduced from 
a series of studies with antiserums 
specific for it (1-3); in the rabbit, T- 
chains have been demonstrated in the 

light-chain fractions of reduced and 
alkylated colostral yA (4). Polyacryl- 
amide electrophoresis of these light- 
chain fractions showed a rapidly mi- 
grating component in addition to the 
usual light-chain bands. In both man 
and rabbits, it seemed that much of 
the T-chain component was not cova- 

lently linked to the whole molecule 

(3,4). 
The difference between low concen- 

trations of serum yA and the high con- 
centrations found in secretions could 
be explained either by local synthesis 
or by some concentrating mechanism. 

Attempts to show transfer in humans 
of yA from serum to parotid saliva 
have either been unsuccessful (1) or 
have resulted in such small and incon- 
stant amounts of transfer (2) that a 

concentrating mechanism seemed un- 

likely. Furthermore, Tomasi et al. (1), 
using immunofluorescence, have shown 
in the interstitial tissue of parotid 
glands many plasma cells containing 
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is required. In that rabbit mammary 
gland fits these criteria and the constit- 
uent polypeptide chains of rabbit colos- 
tral yA can be identified (4) so readily, 
we wanted to determine which of the 
chains was formed by the gland. 

A New Zealand White rabbit (2500 
g) with a litter less than 8 hours old 
was killed by cervical fracture. Taking 
care to avoid adjacent lymph nodes, we 
excised the mammary gland. This gland 
was minced in Hanks's balanced salt 
solution, and six portions of about 100 
mg were incubated in roller tubes in a 
medium containing Cl4-lysine and iso- 
leucine. One of the culture fluids and 
samples of each of the fractions de- 
scribed below were analyzed for the 

presence of labeled yA by immuno- 
electrophoresis and autoradiography. 
Both the incubation and analysis were 
performed as described by Hochwald 
et al. (5, 7). The remaining five culture 
fluids were pooled, passed through a 
diethylaminoethyl (DEAE) cellulose 
column, and eluted stepwise (6). Be- 
cause most of the yA appeared to be in 
the 0.2M fraction (Table 1), this was 
dialyzed against 0.1M borate buffer, pH 
8, and passed through a column of 
Sephadex G-200. The volume expected 
to contain excluded material was the 
only fraction that contained labeled yA 
and accounted for 8 percent of the 
radioactive material precipitable by 
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Fig. 1. Polyacrylamide electrophoresis of 
light chains, with autoradiograph. (Left) 
Dried, stained electrophoretic pattern 
(gel); (right) matched autoradiograph 
(film). A labeled band (arrow) is seen 
in a position anodal to the fastest light- 
chain component. 
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