
point or omitting some of the lowest 

weight points, or both, did not yield 
least-squares solutions significantly dif- 
ferent than those of Eqs. 2 and 3. 

Mercury's heliocentric distances 
were not the same during the times 
of the three superior conjunctions we 
observed. If Mercury behaved as a 

blackbody, the differences in. the ob- 
served T,, values near the three su- 

perior conjunctions would have been 
z 40?K, a value unfortunately much 
smaller than the scatter in the data. 

Kaftan-Kassim and Kellermann (3) 
have reported 19-mm observations of 

Mercury made during February and 
March 1966. Their fit of Eq. 1 yielded 
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Knoll and Sediment Drift near Hudson Canyon 

Abstract. A parallel-bedded accumulation of sediments forms a low ridge on the 
upcurrent side of a partially moated knoll. These sediments were deposited 
beneath a southwestward-flowing current where it is locally decelerated by the 
obstructing knoll. 
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TB = 288 (? 17) + 75 (? 13) cos 
[i + 38 deg (? 6 deg)] ? K (4) 

Using our computing procedure, which 
differs from theirs, we obtained the 

following fit to their data: 

TR 294 (? 6) + 80 (?- 8) cos 
[i + 34 deg (-+ 3 deg)] ?K (5) 

The standard errors are indicated. 
Both fits to the 19-mm data are in 

good agreement with the fits to both 
the 1966 and 1965/1966 3.4-mm 
data. This good agreement would be 

puzzling if Mercury behaved at all like 
the moon. Gary (4) has applied to 

Mercury a horizontally homogeneous, 
single-layer, thermally independent mod- 
el that is reasonably consistent with 
lunar observations. On the basis of 
the 19-mm Mercury data (which is 
more precise than the 3.4-mm data) 
the model predicts a 3.4-mm phase 
amplitude of 170 ? 15 ?K and a 

phase lag of 16 ? 3 arc degrees; these 
values are, respectively, much greater 
than and somewhat less than the ob- 
served 3.4-mm values. But Mercury's 
large orbital eccentricity and the fact 
that its rotation period is two-thirds 
of its orbital period suggest that we 
should not expect Mercury's radio 
emission to be like that of the moon. 
A more complex model will be neces- 

sary to predict how dissimilar the two 

Mercury phase curves should be. 
E. E. EPSTEIN 
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A newly discovered knoll (1) pro- 
truding 1000 m above the continental 
rise off the eastern United States repre- 
sents the top of a huge peak that has 
been gradually buried by several kilo- 
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sents the top of a huge peak that has 
been gradually buried by several kilo- 

meters of sediments (Fig. 1) (2). A 
ridge, 30 km long, 5 km wide, and 40 
meters high, lying parallel to the regional 
isobaths, trends northeastward from the 
knoll to the natural levee of Hudson 
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Fig. 1. A knoll on the continental rise of the eastern United States; contours in 
standard echo-sounding units of 1:400 seconds travel time. Numbers 14 and 15 (inset) 
refer to bottom photographs; arrows indicate direction of current inferred from 
scour marks. Profiles illustrated in Fig. 2 are indicated by A, B, C, and D. 
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scour marks. Profiles illustrated in Fig. 2 are indicated by A, B, C, and D. 
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Fig. 2 (above). Echograms (at 12 kc/sec) of the parallel-bedded 
subbottom layers. (Top) Profiles along the axis of the north- 
eastern fore drift; note the thickening of subbottom layers on 
approaching the knoll. (Botton) Profile perpendicular to the 
northeastern fore drift. 

Fig. 3 (right). Current lineations on the continental rise; com- 
pass diameter, 9 cm. (Top) Current-scoured sand and lutite 
bottom, large mounds; current direction, west-southwest (37? 
20.1'N,70?36'W; 3985 m). (Bottom) Current-smoothed sand 
and lutite bottom, small mounds; current lineations, current 
direction, southwest (37?31'N,70?59'W; 4060 m). 

Canyon. Relatively more rapid and 
more tranquil deposition on this ridge 
than on adjacent parts of the conti- 
nental rise is suggested by the parallel- 
bedded subbottom layers which thicken 
beneath the crest of the ridge (see Fig. 
2). 

The knoll is at least partially sur- 
rounded by a moat. Although the south- 
western depression cannot be distin- 
guished from a submarine channel, a 
moat is clearly present on the north- 
east and southeast sides. 

The moats around seamounts in the 
eastern Atlantic and throughout the Pa- 
cific have been generally ascribed to the 
isostatic sinking of the seamounts subse- 
quent to the volcanic or tectonic events 
that created the peaks (3). Moated or 
partially moated knolls have been 
found in Canary Passage (4), beneath 
the Mediterranean Undercurrent off Gi- 
braltar (5), on Crozet Plateau (6), and 
in other widely separated areas of ob- 
vious bottom-current activity. Heezen 
and Johnson (4) concluded that, at 
least in the case of smaller peaks, scour 
and drift of sediments due to current 
activity are the most reasonable ex- 
planations of the moats. 

Current lineations at two locations 
near the newly discovered knoll (Fig. 
3) indicate appreciable southwestward 
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transport of sediments by the contour- 
following Western Boundary Under- 
current (7). The moat and the sediment 
drift northeast of it apparently result 
from obstruction and deflection of 
Western Boundary Undercurrent by the 
knoll. The fore drift apparently is ac- 
cumulating beneath waters decelerated 
upcurrent of the obstructing knoll, 
while the moat is scoured by near- 
bottom waters accelerated in their flow 
around the knoll. In the waters over- 
lying the obstruction, a Taylor col- 
umn of dead water (8) or a slow cy- 
clonic eddy (9) may provide tranquil 
conditions that permit a greater fallout 
of sediment; only slightly greater depo- 
sition under tranquil conditions near 
the knoll would suffice to account for 
the drift, which may have taken mil- 
lions of years to develop. We do not 
know whether a lee drift exists, for our 
survey did not extend southwestward of 
the knoll. 

Observation of sediment-capped hills 
situated in the midst of a thinly 
veiled basement topography (10) sug- 
gests that increased deposition near 
prominent hills may be a common 
phenomenon. Detailed surveys of other 
knolls and seamounts are needed so 
that one may ascertain the relative im- 
portance of these effects of deep-sea 

currents in the development of sub- 
marine physiography. 

ALLEN LOWRIE, JR. 
BRUCE C. HEEZEN 

Lamont Geological Observatory, 
Columbia University, 
Palisades, New York 10964 
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