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tracellular responses of 10 units. Ap- 
proximately one-third of their units 
showed an initial spike followed by sev- 
eral smaller spikes. They concluded, 
largely from recorded extracellular field 
potentials, that the later spikes of the 
unitary responses probably were excit- 
ed synaptically by way of postulated 
1O axon collaterals (2, 5). However, 
anatomical studies have not demon- 
strated such collaterals. A recent re- 
port by Sedgwick and Williams (6) 
does not mention multiple spiked re- 
sponses from IO. In our investigation, 
intracellular recording revealed an un- 
usual all-or-nothing potential, frequent- 
ly with multiple spikes, and the evi- 
dence presented here indicates that the 
later spikes of the unit response are 
not secondary to recurrent synaptic ex- 
citation. 

Cats were anesthetized with pento- 
barbital (intraperitoneal injection of 35 
mg per kilogram of body weight), and 
supplements were given intravenously 
as required. To minimize movement, 
a bilateral pneumothorax was per- 
formed, and the animal was paralyzed 
with gallamine triethiodide. Through a 
ventral exposure the inferior olive nu- 
cleus was explored systematically with 
glass microelectrodes filled with 2.7M 
KC1 or 2M K-citrate for intracellular 
recording (d-c resistance, 10 to 40 
megohms in brain). In some experi- 
ments KC1 electrodes filled with methyl 
blue dye were used for intracellular 
marking (7), and 2M NaC1 electrodes 
filled with fast green FCF were used 
for extracellular marking (8). Standard 
intracellular recording equipment in- 
cluded a neutralized capacitance pre- 
amplifier and a bridge circuit for pass- 
ing current through the impaling mi- 
cropipette. Stimulation sites included 
ipsilateral pericruciate cerebral cortex 
(by means of bipolar silver ball elec- 
trodes), just beneath the cortical sur- 
face of anterior lobe of the cerebellum 
(by means of an array of concentric 
stainless steel electrodes), and footpad 
of the contralateral forepaw (by means 
of bipolar needle electrodes). Stimulus 
durations were 0.1 msec or less, usual- 
ly applied as single shocks, but occa- 
sionally a train of three stimuli was 
used at a frequency of 1000 per sec- 
ond. 

In ten cats, 106 units were studied 
by either extracellular or intracellular 
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Fig. 1. (A) Response of climbing fiber re- 
corded intracellularly from Purkinje cell. 
Response evoked by stimulation of in- 
ferior olive. [Reproduced with permission 
from Eccles et al. (2)]. (B) Intracellular 
action potential of an inferior olive cell 
evoked by stimulation of ipsilateral cere- 
bral cortex. Top of vertical bar is zero 
potential and length represents 20 mv; 
time calibration, 10 msec. 

ments and physiologically by field po- 
tentials following cerebral and cerebel- 
lar stimulation (4). Unit potentials 
from olive neurons were so unusual 
that identification was not a problem. 
Forty-six units were evoked antidrom- 
ically from cerebellar stimulation; these 
had latencies ranging between 2.5 and 
4.5 msec and followed stimulation rates 
of 100 to 200 per second. The latency 
from ipsilateral cerebral cortex (38 
units) was 12.8 + 3.6 msec (mean and 
standard deviation); that from contra- 
lateral forepaw (87 units) was 21.7 ? 
8.2 msec. Convergence of cerebral and 
spinal inputs was a common finding 
and occurred in 31 dorsal accessory 
olive units and two principal olive units 
(ventral lamella). 

The -extracellular unitary potentials 
generated by the IO cells were similar 
to those reported by Armstrong and 
Harvey (4) and consisted of one to 
five initially positive diphasic or mono- 
phasic spikes (Fig. 2, I and J). The 
number of spikes in a unitary response 
was variable on successive trials, even 
when the strength of the stimulus was 
kept constant, and multiple spikes oc- 
curred more frequently with ortho- 
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dromically evoked responses than with 
the antidromically or direct intracellu- 

larly evoked ones. When the strength 
of orthodromic, antidromic, or intra- 
cellular stimulation was near threshold, 
the evoked action potential had the 
same variation in numbers of spikes 
as with a stronger stimulus, which in- 
dicates the unitary nature of the com- 
plex response pattern. 

After impalement by the microelec- 
trode, IO cells frequently lost their ac- 
tion potentials and had a much re- 
duced resting potential, although syn- 
aptic potentials usually persisted. How- 
ever, satisfactory intracellular spikes 
were recorded from 25 cells, one for 
more than 2 hours. The action poten- 
tial heights varied from 25 to 70 mv, 
overshooting the zero potential in 13 
of the cells. Resting potentials varied 
from -20 to -56 mv. The initial spike 
was followed by a large prolonged de- 
polarization (PD) of variable dura- 
tion; usually one to three smaller spikes 
were superimposed on the PD, with in- 
terspike intervals ranging between 1.2 
to 2.5 msec (Figs. 1B and 2A). In cases 
where only a single spike was seen, 
the transmembrane potential of the PD 
plateau was readily measured and 
ranged from -8 to -24 mv. The ris- 
ing phase of the 1O action potential 
had an inflection, and the spike could 
be separated into A and B components 
by repetitive antidromic or intracellular 
stimulation (Fig. 2F). The PD, with or 
without the repetitive smaller spikes, 
was invariably associated with the B 
spike. Antidromic activation during hy- 
perpolarization of the cell with small 
intracellularly applied currents blocked 
the B spike and the PD, leaving only 
the A spike (Fig. 2, G and H); further 
hyperpolarization then blocked the A 
spike. 

A possible mechanism of the unitary 
multispiked complex is synaptic reacti- 
vation by IO axon collaterals. Since 
intracellular stimulation of a single cell 
gives rise to the entire complex, one 
must also postulate that recurrent col- 
laterals return to the same cell. If this 
is the case, the synaptic drive would 
clearly have to be a powerful one. 
Moreover, the occurrence of only an 
A spike without large synaptic po- 
tentials when the hyperpolarized 10 
soma is antidromically invaded (Fig. 
2H) implies that the PD with its mul- 
tiple spikes is not evoked by collaterals 
distal to the A spike generator. 

The action potential of 10 cells is 
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unlike that found in other central neu- 
rons, although it does resemble the 
burst firing occasionally recorded from 
hippocampal pyramidal cells (9). In 
contrast to the hippocampus bursts, the 
number of spikes in an 10 response 
were never more than five, and pro- 
longed depolarizing currents evoked 
successive bursts rather than a burst 
followed by solitary spikes. 

The simplest intracellular response 

I 

I 

recorded from 10 cells consists of a 
single spike and a large PD (Fig. 2, 
C to F). The multispiked action po- 
tential may represent temporal summa- 
tion of partially inactivated spikes and 
their PD's. On the other hand, the 
small spikes on the PD could also rep- 
resent the electrotonic propagation of 
full-sized spikes generated in the axon, 
their variable size reflecting an increased 
membrane conductance during the PD. 

I 

I 

Fig. 2, A to H. Intracellular records from 10 cells. (A) Action potential evoked by 
stimulation of ipsilateral pericruciate cerebral cortex. (B) Postsynaptic potential re- 
corded in same cell as A to a subthreshold cerebral cortex stimulus. (C) Antidromically 
evoked spike from anterior lobe of cerebellum. (D) Small depolarizing-hyperpolarizing 
synaptic potential following cerebellar stimulation when same cell as C was not anti- 
dromically excited. Note rebound excitation in both C and D. (E and F) Superimposed 
traces from 10 cell stimulated by a short, directly applied, intracellular current (1 per 
second in E and 25 per second in F). (G) Spike evoked antidromically during hyper- 
polarization of 10 cell by intracellularly applied current. (H) Increased hyperpolarizing 
current blocks B spike and PD, leaving only A spike without large recurrent synaptic 
potential. (I) Extracellularly recorded unit transynaptically evoked from cerebellum 
which followed at 40 impulses per second and had a latency variation from 4.7 to 
5.2 msec. (J) Antidromic excitation of the same unit as I to a stronger cerebellar 
stimulus (1.2 times that of I) which followed at 166 impulses per second and had a 
constant latency of 3.2 msec. Top of vertical bar in A to H is zero potential and length 
represents 20 mv. In I and J, vertical bar is 1 my; positivity is upward. Time calibration: 
A to D, 20; E to F, 4; and G to J, 10 msec. 
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Regardless of the mechanisms respon- 
sible for the multispiked action poten- 
tials, spikes probably are conducted 
along the IO axon, since the interval 
between spikes agrees with the delay 
between excitatory postsynaptic poten- 
tials (2 msec) evoked by the climbing 
fibers in Purkinje cells (Fig. 1) (2). 

A graded depolarizing synaptic po- 
tential followed by a graded hyper- 
polarizing potential occurred with 
orthodromic stimulation (Fig. 2B), and 
rebound firing was often present after 
the hyperpolarizing potential (Fig. 2, 
C and D). These synaptic potentials 
will be discussed in detail in a later 

report. It is important to note here that 
a similar depolarizing-hyperpolarizing 
potential (with mean latency of 5 msec) 
was frequently observed following cere- 
bellar stimulation (Fig. 2D), in addi- 
tion to the all-or-nothing spike com- 

plex. Usually the threshold for the 
orthodromic action potentials from 
cerebellum was higher than that for 
antidromic firing. In nine cells, how- 

ever, the orthodromic discharge was 
evoked at a lower stimulus intensity 
(Fig. 21); the mean latency for this 

group was 9.5 ? 4.2 msec. If the cur- 
rent of the stimulus was increased the 
variable latency of these cells to the 
constant value characteristic of an anti- 
dromic response (Fig. 2J) was suddenly 
shortened. Thus, cerebellar stimulation 
can evoke a transynaptic response in an 
10 cell by a route other than anti- 
dromic excitation of its own axon. This 
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It has often been noted that animals 
can selectively respond to certain high- 
ly specific perceptual cues without the 
benefit of previous experience with 
those cues (1). The stimuli involved 
usually represent but a small fraction 
of the entire stimulus situation and are 
termed sign stimuli or releasers. In 
many instances the resulting response 
is also quite specific and stereotyped. 
For instance, newborn, previously un- 
fed garter snakes (Thainnophis s. sir- 
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is supported by Eccles' data showing 
that the "reflex climbing fiber response" 
of a Purkinje cell may be evoked 
without exciting the climbing fibers to 
that cell (2). 

This study has shown that the mech- 
anism of the IO cell unitary repetitive 
discharge seen after orthodromic, anti- 
dromic, or direct intracellular stimula- 
tion does not involve reactivation by 
way of recurrent collaterals. It cannot 

yet be stated whether transynaptic exci- 
tation of 10 cells after cerebellar stimu- 
lation occurs by way of recurrent 10 
axon collaterals, by way of axon col- 
laterals from mossy fibers, or possibly 
by way of a separate orthodromic cere- 
bello-olive pathway. 

WAYNE E. CRILL 
THELMA T. KENNEDY 

Department of Physiology and 
Biophysics, University of Washington 
School of Medicine, Seattle 98105 
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talis) will respond with prey-attack be- 
havior to extracts of the surface sub- 
stances of normally eaten prey when 
these extracts are presented on cotton 
swabs (2). Similar specificity to chemi- 
cal cues has been demonstrated in many 
forms of invertebrates and, to a lesser 
extent, in vertebrates (1). 

Beyond the existence and analysis 
of such stimulus-response relations in 
a particular species looms the broader 
evolutionary implications. I here re- 
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port the chemical perception aspects 
of feeding behavior in a number of 

species of neonate colubrid snakes. 
I presented a variety of extracts 

from the surface substances of small 
animals to litters of individually isolated 
newborn snakes. The animals used in 

preparing extracts for the testing were: 

nightcrawler (Lumbricus terrestris), leaf- 
worm (Lumbricus rubellus), redworm 
(Eisenia foetida), turtle leech (Pla- 
cobdella parasitica), slug (Deroceras 
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minnow (Notropis atherinoides acutus), 
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phosed salamander (Ambystoma jeffer- 
sonittm), cricket frog (Acris crepitans 
blanchardi), and newborn mouse (Mus 
musculus). An extract was made by 
placing one or more of the intact ani- 
mals in distilled water (10 ml of water 

per 1.5 g of body weight) at 50?C for 1 
minute and stirring the water gently. 
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The snakes were from litters or eggs 
borne by gravid females captured in 
the field and maintained in captivity 
until parturition or egg-laying. Shortly 
after birth or hatching the snakes were 
weighed, measured, and then isolated 
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cm. Each tank was placed on white shelf 
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of the tank was bare except for a small 
plastic petri dish containing water. Ex- 
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peirature of the room in which the 
snakes were housed never varied more 
than between 22? to 26?C; during test- 
ing the temperature was maintained at 
24? to 25?C. 

Each member of a given litter of 
newborn snakes was tested only once 
on a series of extracts of the surface 
substances of potential prey. Usually 
twelve or thirteen different extracts were 
used. Distilled water was the control. 
Each subject received a different order- 
ing of the test extracts, systematically 
balanced insofar as possible for each 
litter. Testing was carried out over 2 
or 3 successive days beginning on the 
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peirature of the room in which the 
snakes were housed never varied more 
than between 22? to 26?C; during test- 
ing the temperature was maintained at 
24? to 25?C. 

Each member of a given litter of 
newborn snakes was tested only once 
on a series of extracts of the surface 
substances of potential prey. Usually 
twelve or thirteen different extracts were 
used. Distilled water was the control. 
Each subject received a different order- 
ing of the test extracts, systematically 
balanced insofar as possible for each 
litter. Testing was carried out over 2 
or 3 successive days beginning on the 
3rd or 4th day of life and always be- 
fore any previous feeding or exposure 
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Chemical-Cue Preferences of Inexperienced Snakes: 

Comparative Aspects 

Abstract. Different species of new-born, previously unfed snakes will respond 
with tongue flicking and prey-attack behavior to water extracts of the skin sub- 
stances of various small animals. However, there are clear species differences in 
the type of extract responded to by previously unfed snakes, even within the same 
genus. These differences correspond to the normal feeding preferences shown by 
the various species. 
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