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Intermolecular Forces and the 
Nature of the Liquid State 

Liquids reflect in their bulk properties the attractions 
and repulsions of their constituent molecules. 

B. Widom 

The central problem in an attempt 
to understand the nature of a liquid 
from first principles is that of account- 

ing for its bulk macroscopic properties 
in terms of the structure, motion, and 
mutual interactions of the molecules 
of which it may be presumed to be 

composed. Even leaving out of account 
still more difficult questions concerned 
with a liquid's characteristic fluidity, 
and asking only about those of its 

properties that characterize it in a state 
of equilibrium (its density, specific 
heat, compressibility, and so forth), 
we are yet far from having produced a 
fully convincing and comprehensive 
account of the connection between the 
macroscopic and microscopic levels. 

There is no reason to suppose that 
this lack in our theoretical understand- 
ing is in any way due to the imperfec- 
tion of our knowledge of the inter- 
molecular forces. The major features 
of these forces [or, as I shall speak of 
them below, the interaction potentials 
(c), the force being the negative of 
the rate at which 4 varies with increas- 
ing separation (r) between molecular 
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importance in each of these two regions 
-the region around the triple point, 
where the liquid is an "ordinary" 
liquid, and the region around the criti- 
cal point, where it is quite extraordi- 
nary. 

In Fig. 1 is a typical interaction 
potential +(r) as a function of the 
distance (r) between centers of a pair 
of interacting molecules. It is charac- 
terized by a very strong repulsion, of 
very short range, at small r, and by a 
much weaker, and much longer ranged, 
attraction at larger r. In Fig. 2 is a 
typical "phase diagram" of any simple 
substance, giving the ranges of pressure 
(p) and temperature (T) over which 
each phase is stable. It shows the triple 
point where the solid-liquid, solid- 
vapor, and liquid-vapor equilibrium 
lines meet and shows also the critical 
point at the terminus of the liquid- 
vapor equilibrium line. The general 
theme of this paper, and its major 
thesis, is that to understand the prop- 
erties of a liquid in the neighborhood 
of its triple point, and, in particular, 
to understand the character of the 
liquid-solid and liquid-vapor equilibria 
there, one must know accurately the 
effects of the repulsive forces, but it is 
sufficient to treat quite crudely the ef- 
fects of the attractive forces; while 
precisely the opposite is true at the 
critical point, where, to understand the 
properties of the fluid and the charac- 
ter of the liquid-vapor equilibrium, 
one must treat with great fidelity the 
effects of the attractive forces, though 
it is sufficient to take merely nominal 
account of the presence of repulsive 
forces. 

Where I speak of the necessity to 
treat accurately the effects of the at- 
tractive or repulsive forces, I do not 
mean that it is important to know the 
corresponding part of b(r) with quan- 
titative accuracy. Indeed, even if the 
+(r) of Fig. 1 were idealized as a 
square-well potential, as in Fig. 3, but 
the statistical mechanical consequences 
of such a potential were then deter- 
mined without further approximation, 
there would undoubtedly result an es- 
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centers] are known quite well enough; 
they are generally strong repulsions at 
short distances and weak attractions at 
long distances. The difficulty, rather, 
is in carrying out the program pre- 
scribed by statistical mechanics for 
relating the intermolecular forces to 
the bulk macroscopic properties. 

Nevertheless, the broad outlines of 
this connection (though admittedly not 
its finer details) have begun to emerge 
as the result of recent theoretical 
studies. It has long been known that 
there are at least two qualitatively dif- 
ferent kinds of equilibrium state in 
which a liquid may exist. A liquid at 
its triple point, where it may be simul- 
taneously in equilibrium with its vapor 
and with a crystalline solid (for ex- 
ample, water at its freezing point in an 
atmosphere of its own vapor), is in a 
state typical of ordinary dense liquids 
as commonly observed; whereas a 

liquid at its critical point, where it and 
its equilibrium vapor lose their separate 
identities and form a single fluid phase 
of relatively low density, is in a unique 
state with properties very different 
from those which characterize it at its 
triple point. The key to our present 
understanding of liquids is the recogni- 
tion that different aspects of the inter- 
molecular forces, the long-range attrac- 
tions in one case and the short-range 
repulsions in the other, are of dominant 
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Fig. 1. Potential energy q as a flunction of 
distance r between centers of a pair of 
interacting molecules. 
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Fig. 2. PressYuretemperatture phase dia- 
gram of a simple substance. The circles 
mark the triple point, where the three 
equilibrium lines meet, and the critical 
point, at the tcrmiinus of the liquid-vapor 
line. 

Fig. 3. The square-well potential, an ideal- 
ization of the more realistic potential in 
Fig. 1. 
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sentially correct description of all the 

macroscopic properties of matter 

throughout a vast region of the p, T 

plane, including the neighborhoods of 
the triple and critical points. Thus, 
what matters is not the quantitative 
accuracy of the assumed p (r), but 
rather the qualitative accuracy of the 

resulting spatial correlations of molec- 
ular positions; the triple and critical 

points are distinguished by having the 
relevant qualitative features of this 
correlation, and the nature of its prop- 
agation through the fluid, determined 

primarily by the short-range repulsive 
forces between molecules, or by the 

longer ranged attractive forces, respec- 
tively. 

Properties of a Fluidi Near 

Its Critical Point 

The classical description of a criti- 
cal point by the van der Waals equa- 
tion of state, 

p Nk NT.'/(V - Nb) - a(N/ V)", (1) 

is well known. Here the lluid of vollume 
V consists of N molecules, with a and 
b characteristic molecular constants and 
k, Boltzmann's constant. The variation 
of pressuLre with volume at fixed tem- 
perature, which is implied by Eq. 1 
near the critical point, is shown in 

Fig. 4. 'he highest lying of the three 
isotherms shown is a typical one for 
a temperature above the critical tem- 

perature, T > 7',; the next is the criti- 
cal isotherml, 7' = '., characterized by 
vanishing slope at its point ot inflec- 
tion, which is the critical point; and the 
lowest of those shown is a typical one 
for a temperature below the critical 

temperature, 7' < T.' The latter, which 
as determined from Eq. 1 is a smooth 
curve with loops, is to be reinterpreted 
by use of Maxwell's cqual-areas con- 
struction, as shown; and the loops are 
then to be discarded in favor of the 
horizontal line segment, which rep- 
resents the behavior of the system when 
a liquid and a vapor phase are both 
present. The dashed curve, known as 
the coexistence curve, is the locus of 
the end points of the horizontal line 
segments, anId thus outlines the two- 
phase region of the p, V plane. Its 
maximum is at the critical point, where 
it is tangent to the critical isotherm. 

Of the numerous features which 
characterize the van der Waals equa- 
tion, and many other equations of 
state of that type, I shall call particular 

attention to three: (i) The critical iso- 
therm is a cubic curve in the neighbor- 
hood of the critical point; that is, on 
the critical isotherm the deviation of p 
from its value p, at the critical point 
is proportional to the cube of the 
deviation of V from the critical volume 

Vc, 

p - po - (V - V)3, (2) 

for small values of V-V,. (ii) The 
coexistence curve is parabolic in the 

neighborhood of the critical point; 
that is, on the coexistence curve the 
deviation of p from Pc is proportional 
to the square of the deviation of V 
from Vc, 

p - pc -- (V - Vc), (3) 

for small values of V- V. (iii) For 

any fixed volume V, including the criti- 
ical volume Vc, the heat capacity at 
constant volume, Cv, suffers a simple 
discontinuity when the coexistence 
curve is crossed. More specifically, as 
shown in Fig. 5, it increases discon- 

tinuously from one finite value to an- 
other when the two-phase region is 
entered from the one-phase region 
through any point of the coexistence 
curve, even the critical point. The 
horizontal axis in the figure could just 
as well have been labeled with p as 
with T, and the discontinuity occurs at 
that value of T (or, equivalently, of p) 
that corresponds, on the coexistence 
curve, to the given volume. 

Each of these three features, com- 
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Fig. 4. Pressure-volume isotherms from 
the van der Waals equation of state. The 
horizontal line-segment on the T < To 
isotherm is drawn so as to make the 
shaded areas equal. The dashed curve is 
the coexistence curve, which is the locus 
of the end points of such horizontal line 
segments. The circle marks the critical 
point. 
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in Fig. 6. It is well established that Ci, 

Fig. 5. Heat capacity Cv as a function of 
temperature, at a fixed volume, for a fluid 
satisfying any of the "classical" equations 
of state of the type of the van der Waals 
equation. The diagram is qualitatively the 
same whatever the fixed volume V, even 
if it is the critical volume V,. The discon- 
tinuity occurs at the phase transition tem- 
perature that corresponds to the fixed 
volume in question. For the van der Waals 
equation itself the high-temperature 
branch of the curve, representing Cv in 
the one-phase region, would be horizontal 
at the constant value 3Nk/2. 

mon to almost all approximate equa- 
tions of state, is in contradiction to the 
experimental facts (1). (i) In reality 
the degree of the critical isotherm in 
the neighborhood of the critical point 
surely exceeds 3, probably exceeds 4, 
and may possibly be as large as 5. 
Then Eq. 2 should be replaced by 

p - p . - (V - YVc) V - V, -1 (4) 

where 8 is the algebraic degree in ques- 
tion, which need not be (and very 
likely is not) an integer, and is in any 
case greater than 3. (ii) Likewise, the 
degree of the coexistence curve in the 
neighborhood of the critical point is 
not 2, but is instead very close to 3. 
Then Eq. 3 should be replaced by 

p - pC - - | V - Vc l (5) 

where d is the algebraic degree in 
question, which need not be (and very 
likely is not) an integer, and is in any 
case very much closer to 3 than to 2. 
(iii) Finally, Fig. 5 is a correct qualita- 
tive picture of the behavior of CV only 
when the fixed volume at which the 
temperature dependence of Cv is being 
depicted is far from the critical volume. 
In a real fluid, the closer V is to Vc, 
the greater are the finite values of Cv 
between which the discontinuous jump 
occurs, and these increase without 
limit as V -- Vc. At V = V,, the de- 

pendence of C, on T is like that shown 
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the low-temperature branch of this 
curve (that is, the behavior of C, in 
the two-phase region, with the system 
as a whole at the critical volume) is 
given approximately by 

C, = A - Bln I T - T, (6) 

for T close to T., with A and B two 
constants characteristic of the sub- 
stance; and that Ci, on the high-tem- 
perature branch is identical, except for 
the replacement of A by the smaller 
constant A'; so that in A-A' we have 
the vestigial remains of a simple dis- 
continuity now buried beneath the 
logarithmic infinity. However, the 
data are also consistent with the pos- 
sibility that the curve goes to infinity as 
the inverse of a small fractional power 
of T - T,. rather than as In (T- T,.). 

Two-Dimensional Lattice-Gas Model 

No equation of state of van der 
Waals type can account for any of these 
experimental facts. There is, however, 
a simple fluid model, known as the lat- 
tice-gas model, which has proved to 
be extraordinarily successful in ac- 
counting for the observed properties of 
a substance at its critical point. The 
model is a transcription, first success- 
fully exploited by Lee and Yang (2), 
of the Ising model of ferromagnetism 
into language appropriate to a fluid. 
Suppose, as in Fig. 7, that the fluid 
volume is divided into a large number 
of microscopic cells each centered at 
one site of a lattice. The cells are not 
imagined to have walls which constrain 
the molecular motions but are rather 
imagined merely to provide a coordi- 
nate system in terms of which con- 
tinuous distance variables may be 
approximated by discrete distance vari- 
ables. The interaction potential between 
a pair of molecules at any instant is 
taken to depend only on the number of 
lattice steps separating the cells in 
which the molecules find themselves at 
that instant; but it does not depend on 
the precise positions of the molecules 
within those cells. Specifically, the po- 
tential energy of interaction of two 
molecules is taken to be + oo if they 
are in the same cell; - e (with e a 
positive constant) if they are in a pair 
of neighboring cells, one molecule in 
each; and 0 if the two are neither in 
the same cell nor in neighboring cells 
but are in cells separated by two or 
more steps on the underlying lattice. In 
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Fig. 6. Temperature dependence of Cv for 
a real fluid at its critical volume. 

this way one imitates the strong repul- 
sion at small r, weak attraction at inter- 
mediate r, and ultimate vanishing as 
r-> co, shown by the more realistic b(r) 
in Fig. 1. Indeed, this lattice-gas inter- 
action appears to resemble closely the 
idealized 0(r) in Fig. 3, but with "r" 
now discrete, whereas in Fig. 3 it is 
an ordinary continuous distance vari- 
able. In spite of this apparent close re- 
semblance of the lattice-gas interac- 
tion to an idealized square-well interac- 
tion in a continuum, the two differ pro- 
foundly in their account of the repul- 
sive forces, as we shall later see. 

Many of the properties of the lattice 
gas are known. In two dimensions, 
these properties follow from analytical 

* . 2 0 * 

* . 0 * * 

Q3 

Fig. 7. The lattice-gas model, showing the 
fluid volume divided into cells, each cen- 
tered at one site of a lattice. The lattice 
sites are represented by solid circles. The 
diagram shows four molecules repre- 
sented by open circles and numbered 1, 
2, 3, and 4. In this configuration the 
energy of interaction of the pair 1, 2 is 
+ oo, that of the pair 3, 4 is - e, and 
that of each of the four remaining pairs 
(1, 3; 1, 4; 2, 3; 2, 4) is 0. 
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Fig. 8. A typical pair-correlation function 
in a liquid. It is a measure of the extent 
to which the average density at a distance 
r from the center of any molecule deviates 
from the mean density of the fluid. 

results derived by Onsager (3) and 

Yang (4) for the corresponding Ising 
model, and from some later develop- 
ments (5); while, in three dimensions, 
they are known largely from extensive 
numerical analysis by Domb, Fisher, 

Sykes, and their co-workers (6). The 

following are properties of the two-di- 
mensional lattice gases: (i) The critical 
isotherm is of the 15th degree, so 
that = 15 in Eq. 4. (ii) The coexist- 
ence curve is of the 8th degree, so 
that d - 8 in Eq. 5. (iii) When V-= V, 
the heat capacity Cv has a symmetrical 
logarithmic infinity at T = Tc, so that 

Eq. 6 holds, but with A'= A; that is, 
there is no finite discontinuity super- 
imposed on the logarithmic singularity. 
These are, of course, not the experi- 
mentally observed properties; but re- 
member that so far we are looking only 
at a two-dimensional model. Neverthe- 

less, even these results are noteworthy, 
for they mean that at last a theory 
has been discovered which does not 

comply with those of van der Waals 

type, that is, a theory which does not 

inevitably give rise to a cubic critical 

isotherm, a parabolic coexistence curve, 
and a Cv which is finite, albeit discon- 

tinuous, at the critical point. Further- 

more, these results apply exclusively to 
a two-dimensional system, so they 
show, for the first time, that the di- 

mensionality of the system is important 
in determining the qualitative nature of 
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Fig. 9. (a) The solid circles represent two 
hard spheres in contact. The dashed circle 
is the exclusion sphere of the hard sphere 
with which it is concentric; that is, it is 
the sphere from which the center of the 
second hard sphere is excluded. (b) Two 
hard spheres with overlapping exclusion 
spheres. The region of overlap is shaded. 
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the critical point. This essential idea 
was missing from all the earlier the- 

ories, which took account, at most, only 
of certain trivial aspects of dimensional- 

ity. 

Three-Dimensional Lattice-Gas Models 

We turn, then, to the three-dimen- 
sional lattice-gas models, with the well- 
founded expectation that their proper- 
ties will account for the experimental 
observations in real fluids, and this 

hope is fully realized. If there are resid- 
ual differences between the behavior 
of three-dimensional lattice gases and 
real continuum fluids at the critical 

point (and slight differences are indeed 

indicated), the agreement is in any event 

very much closer than with any of the 
classical theories of van der Waals 

type: (i) The critical isotherm of a 
three-dimensional lattice gas has a de- 

gree close to 5; (ii) the coexistence 
curve has a degree close to 3; and (iii), 
when V = Vc, the heat capacity C, in 
the neighborhood of T = TC is given ap- 
proximately by Eq. 6, with different con- 
stants A and A' on the high- and low- 

temperature branches; though, as with 
the real experimental results, the data 
are also consistent with the possibility 
that Cv becomes infinite as the inverse 
of a small fractional power of T-T, 
rather than as In (T - T7). 

Granting that the lattice-gas model 

provides an essentially correct descrip- 
tion of a fluid in the neighborhood of its 
critical point, we must now inquire into 
the different ways in which the effects 
of the repulsive and attractive forces 

propagate through the model fluid. If E, 
the magnitude of the attractive interac- 
tion potential between molecules in 

neighboring cells, were 0, there would 
remain as molecular interaction only 
the infinite repulsion between molecules 
in the same cell. In this limiting case, 
if it is known that a particular cell is 

occupied then it is certain that no sec- 
ond molecule is in that same cell, but 
the probability of any other cell in 
the volume being occupied is simply 
N/C, where N is the total number of 
molecules, and C is the total number 
of cells, in the model fluid. Thus, in the 

lattice-gas model, when the attractive 

component of the intermolecular po- 
tential vanishes, the equilibrium condi- 
tion of the fluid is one in which the 
cells are occupied entirely at random, 
subject only to the restriction of no 

multiple occupancy. The repulsive 
component of the intermolecular po- 

tential does not by itself lead to correla- 
tions in molecular positions extending 
beyond a single cell. Any longer ranged 
correlations in the lattice gas must then 
be due entirely to the attractive com- 

ponent of the potential. The repulsive 
component merely establishes a scale of 
distance, that is, the edge-length of the 
cell, or the spacing of the underlying 
lattice, but it is the attractive compo- 
nent which determines through how 
many multiples of this unit of distance 
the correlation of molecular positions 
may propagate. 

Real Continuum Fluids 

It is the propagation of such correla- 
tions through great distances which is 
the single most significant feature of the 
critical point at the molecular level. 
Turn now from the lattice-gas model to 
a real continuum fluid. Define the radial 
distribution function g(r) to be that 
function of distance r which, when 
multiplied by the average density p of 
the fluid, yields the average local den- 

sity at a distance r from the center of 
an arbitrarily chosen molecule in the 
fluid. Thus it is the deviation of g(r) 
from 1 which measures the extent of 
the correlation between molecular posi- 
tions, that is, the quantity G(r) defined 

by 

G(r) = g(r) - 1 

is the pair correlation function and de- 
scribes the correlating effect of the pres- 
ence of any one molecule on the posi- 
tion of any second molecule. A typical 
G(r) is shown in Fig. 8. At very small 
distances r, the correlation is large and 

negative because the strong intermolec- 
ular repulsion at short distances makes 
it extremely unlikely that any other 
molecule will be found so close to the 

arbitrarily chosen central molecule. At 
somewhat larger distance G(r) becomes 

positive, for at such distances from the 
central molecule there is a greater than 

average chance of finding another mole- 
cule. Such a molecule, in turn, would 

repel strongly molecules that are near 
it, so at still larger distances from 
the central molecule the local density 
becomes less than the average density; 
that is, G(r) again goes negative, and 
so forth. At each stage, however, molec- 
ular positions are determined only 
with some probability, not with certain- 
ty, so the information about the pres- 
ence of the central molecule is gradual- 
ly lost, G(r) decays to 0 at large r, and 
the local density becomes indistinguish- 
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able from the overall average density. 
Now, by a fundamental theorem of 

Ornstein and Zernike (7), the isothermal 

compressibility X is closely connected 
to the integral of the pair-correlation 
function; in a three-dimensional fluid, 

pkTx = 1 + 47rp G(r)rdr, (7) 

where p is the average density measured 
in number of molecules per unit vol- 
ume. The integral, as the average of 
the correlation function, determines the 

density fluctuations in the fluid, which 
in turn are related by statistical me- 
chanical theory to the compressibility X. 
Equation 7 results from equating those 
two expressions for the density fluctua- 
tions. Near the critical point in the one- 

phase region the p, V isotherms are 
almost horizontal (Fig. 4), and at the 
critical point itself (Op/ V)T = 0. The 

compressibility X, which is -V1- ? 
(OV/Ip),, is then very large near, and 
infinite at, the critical point. Therefore, 
the integral in Eq. 7 converges in the 

one-phase region, but more and more 

slowly as the critical point is ap- 

proached, finally diverging at the criti- 
cal point. The reason is that the effec- 
tive range of the correlations-that is, 
the distance within which the correla- 
tions are still significant but beyond 
which G(r) decays rapidly-itself be- 
comes infinite at the critical point. 
Thus, macroscopically a fluid in the 

neighborhood of its critical point is 
characterized by a very great compressi- 
bility, and this is a manifestation of 
what we have now seen, at the molec- 
ular level, to be a very great correla- 
tion range. This correlation length de- 
termines the average linear size of the 

density inhomogeneities, and hence 
also of the inhomogeneities in the index 
of refraction, that arise from spon- 
taneous density fluctuations. Sufficiently 
close to the critical point, the correla- 
tion length becomes as large as the 

wavelength of visible light, which 
these inhomogeneities then scatter 

strongly, thus manifesting themselves 
in the "critical opalescence" that 
Debye's recent researches have done so 
much to elucidate (8). 

We may summarize, as follows, the 

position we have now reached in our 

argument. The repulsive forces in the 

lattice-gas model serve merely to estab- 
lish a unit of distance but do not other- 
wise contribute to the propagation of 
correlations through the fluid. This is 
not a general feature of repulsive forces 

-quite the contrary, as we shall see- 
but merely an artificiality of the model; 
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yet the model is phenomenally success- 
ful in accounting for the properties of 
real fluids near their critical points. It 
must be, then, that it is fundamentally 
the propagation of those correlations 
that are due to the attractive com- 

ponent of the intermolecular interac- 
tion, and not of those due to the repul- 
sive component, that determines the 
character of the critical phenomenon. 
This was the first half of the thesis I 

proposed in my introductory remarks. 
The second half may now be stated 
thus: It is fundamentally the molecular 
correlations that are due to the repul- 
sive component of the intermolecular 
forces, and not those that are due to 
the attractive component, that deter- 
mine the properties of a fluid at its 

triple point; and a model which idealizes 
the attractive forces in such a way as to 
ascribe to them no correlating effect 
whatever, yet treats the correlating ef- 
fect of the repulsive forces with high 
accuracy, is just as successful in ac- 

counting for the character of the triple 
point as the lattice-gas model is in de- 

scribing the critical point. 

Molecules as Hard Spheres 

The first clue to the importance of 
the repulsive forces in determining the 
nature of liquid-solid equilibrium is 

provided by the lattice-gas model itself 

-by its utter failure to show any sign 
of the appearance of a solid phase. A 

crystalline solid would be characterized 

by a pair-correlation function G(r) 
which, unlike that in Fig. 8, was not 

asymptotically zero, but rather ap- 
proached more and more closely a 
function which oscillated with undi- 
minished amplitude, and strict perio- 
dicity, at large distances r. A solid, then, 
unlike a fluid, has long-range order. 
Even at the critical point of a fluid, 
G(r) is damped to zero, though the 

damping is then much slower and of 
a character qualitatively different from 
that in a fluid of finite compressibility. 
The liquid-solid equilibrium line in Fig. 
2 separates sharply those states of the 

system, in which long-range order is 

absent, from those in which it is present. 
The lattice-gas model, however, has 

only one two-phase equilibrium line 
in its entire p, T plane, a single analytic 
curve emerging from the origin and 

ending in a critical point. At no finite 

p, however large, and at no positive T, 
however small, is there any state of the 
lattice gas with long-range order. Thus 
the lattice gas fails as a model near the 

triple point as spectacularly as it suc- 
ceeds near the critical point. We already 
know that in that model the attractive 
forces produce correlations that can 

propagate beyond the range of the 
forces themselves, but that the repulsive 
forces do not; and it is in the latter 
feature of the model that we must then 
seek the origin of the failure of the 
lattice gas to account for crystalliza- 
tion. 

If vo is the volume of one cell in the 

lattice-gas model, then this is the vol- 
ume from which any one molecule ex- 
cludes the center of any other. A pair 
of molecules, one in each of two dif- 
ferent cells, excludes the center of any 
third molecule from a volume 2vo. 
In general, n molecules, whatever their 
relative positions, exclude an (n+l)th 
molecule from a total volume nv,. 
Thus, the repulsive forces in the lattice 

gas lead to exclusion volumes which 
are additive. Contrast this with the ex- 
clusions of impenetrable spheres in a 
continuum, that is, with the exclusions 
that result from the repulsive portion 
of a potential such as that in Fig. 3, 
where r is a continuous distance varia- 
ble. A hard sphere excludes the center 
of a second identical sphere from a 
sphere of twice its own diameter, which 
I shall call the exclusion sphere (Fig. 
9a). While the physical spheres may 
not overlap, their exclusion spheres may 
(Fig. 9b), with the result that exclu- 
sion volumes are not additive: the 
volume from which two spheres ex- 
clude the center of a third may be less 
than simply twice the volume from 
which one sphere excludes the center 
of a second; and the deviation from 
additivity, that is, the extent of overlap 
of the exclusion spheres, depends on 
the molecular configuration. It is 
through this configuration-dependent 
deviation from additivity of exclusion 
volumes that short-range repulsive 
forces produce longer ranged correla- 
tions in molecular positions, so that a 
continuum fluid of hard spheres has a 
pair-correlation function G(r) not quali- 
tatively different from that in Fig. 8, 
but very different indeed from the G(r) 
of the lattice gas without attraction. 

If exclusion volumes were strictly 
additive, so that n molecules excluded 
the center of any other from a volume 
nvo, with v0 a fixed constant, then in 
the absence of attractive forces the 
equation of state of an assembly of N 
such impenetrable molecules in a vol- 
ume V would be (9) 

p = -(kT/vo)ln(l - Nvo/V), 
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whatever the dimensionality of the sys- 
tem. In particular, this is also the equa- 
tion of state of the lattice gas when e = 
0. It is an analytic function of density 
for all densities up to that of complete 
filling, N/V = 1 / v, and therefore 
shows no phase transition. When, as in 
a continuum fluid of hard spheres, ex- 
clusion volumes are not additive, the 

equation of state depends sensitively 
on the dimensionality of the system. In 
one dimension the equation of state of 
hard spheres hs (that is, rigid rods) 
without attraction is 

ph, - NkT/(V -Nb) (one-dimensional) (8) 

where b is the sphere diameter (rod 
length). This, too, shows no phase 
transition. In two and three dimensions, 
the equations of state of hard spheres 
are not known analytically, but the 

computer studies of Alder and Wain- 

wright and of Wood and Jacobson 

provide strong evidence that in each of 
these cases there is a first-order phase 
transition between a less dense phase 
without crystalline order and a more 
dense phase with crystalline order (10). 

That the attractive forces between 
molecules are relatively weak and long 
ranged compared to the very steep re- 

pulsive forces suggests that, in a fluid 
as dense as a liquid is at its triple point, 
the attractive forces exerted on any 
molecule by its neighbors largely can- 
cel, while the negative potentials largely 
add, so that each molecule in such a 

liquid may be thought of as a hard 
sphere in a deep but uniform (that is, 
without gradients) negative background 
potential. The depth of this background 
potential is proportional to the number 
of molecules contributing to it, and 
hence to the density of the fluid, so that 
the total potential energy U in the fluid 
of N molecules is 

U --=aN * N/V (9) 

where a is a positive proportionality 
constant. Because the background po- 
tential has no gradient, it leads to no 
forces on the hard spheres which are 
immersed in it, and the equilibrium 
configurations of the latter are identical 
to what they would be in a fluid of 
hard spheres at the same density but 
without a background potential. If Sh, 
is the configurational entropy of the 
latter system, then the configurational 
entropy S of the model fluid with the 
background potential is identical: 

S = SI,, (10) 
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Then from Eqs. 9 and 10 the equation 
of state of the model system is 

p = [O(TS- U)/OV]T 
= ps - a(N/V)2 (11) 

where phs is the pressure of a hard- 

sphere fluid without a background 
potential which is at the same density 
and temperature as the model fluid. 
The effect of the uniform negative 
background potential on the equation 
of state of the hard-sphere system is 
therefore merely to lower the pressure 
by an amount proportional to the 

square of the density (9, 11, 12). 
This is now the model which I antic- 

ipated earlier. The positional correla- 
tions in it are due entirely to the repul- 
sive forces, idealized as those between 
hard spheres. The attractive forces, 
which are imagined to give rise merely 
to a uniform background potential, do 
not in any way influence the molec- 
ular configurations. My original thesis 
will then be fully established if Eq. 11 

proves to account well for the proper- 
ties of a liquid near its triple point. 

It is essential to take P7S in Eq. 11 
to be the correct pressure of a three- 
dimensional hard-sphere system, just 
as it was essential in the application of 
the lattice-gas model to the study of the 
critical phenomenon to evaluate ac- 

curately the partition function of the 
three-dimensional model. If, only for 
the moment, we identify Ph, with what 

p 
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Fig. 10. A pressure-volume isotherm of a 
fluid of hard spheres with no background 
potential (a 0), and an isotherm at the 
same temperature for the same hard- 
sphere fluid with a background potential 
(a > 0). The latter has been reinterpreted 
by an equal-areas construction and shows 
a first-order phase transition from a solid 
of volume Vs to a liquid of volume V7. 
The phase transition in the former case 
(a = 0) occurs between a state of volume 
VI, with crystalline order, and a state of 
volume V2, with no long-range order. 

we know it to be in one dimension, Eq. 
8, then the equation of state of the 
model, as given by Eq. 11, becomes the 
van der Waals equation (11, 12), Eq. 1. 
Thus, except for the fact that we must 
use the true three-dimensional p,8, 
rather than its one-dimensional form, 
our model fluid is a van der Waals 

"gas." An interesting and curious in- 
version has therefore occurred. The 
van der Waals equation was originally 
introduced into physical science to rep- 
resent the behavior of imperfect gases 
and to treat liquid-vapor equilibria, in 

particular the critical phenomenon. 
Those applications have now been dis- 
credited; but I claim that, instead, what 
is in essence still the van der Waals 

equation, though with the three-dimen- 
sional ps, replacing the original one- 
dimensional P78, is the basis of a correct 

theory of dense liquids and of the liq- 
uid-solid equilibrium in the neighbor- 
hood of the triple point. 

The upper curve in Fig. 10, labeled 
a = 0, represents schematically the 
three-dimensional P7i8 as a function of 
volume, at a single temperature, as it 

might be estimated from the computer 
studies (10) of the hard-sphere system. 
Because the only forces are then in- 

finitely strong repulsions, it follows that, 
at any fixed volume, the pressure is 

necessarily proportional to the absolute 

temperature, so a p71 isotherm at any 
other temperature would differ from the 
one shown only by a vertical scale 
factor. The horizontal portion of the 
isotherm shows the first-order phase 
transition occurring between a "liquid" 
of volume V2 and a "solid" of volume 
V1. The lower curve, labeled a > 0, 
represents schematically the p given by 
Eq. 11 at the same temperature as that 
for which the upper curve is drawn; so 
that it is constructed from the upper 
curve by subtracting from the latter a 

quantity inversely proportional to V2. 
Over the range of volumes where the 
a = 0 isotherm has its horizontal por- 
tion, the a > 0 isotherm is an increas- 
ing function of V and so represents 
mechanically unstable states of the 
model system. Outside the range 
V1 < V < V2, the pressure Pl,s on the 
upper curve falls sufficiently rapidly 
with increasing V so that the resulting 
p on the lower curve also decreases 
with increasing V outside that range. 
The a > 0 isotherm must next be re- 

interpreted by an equal-areas construc- 
tion, as shown in Fig. 10, with the 
result that the model system, at the 
temperature for which its p, V isotherm 
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Table 1. Properties at the triple-point. First 
column, ratio of liquid to solid volume. 
Second column, logarithm of pV1/NkT, with 
V,/N the volume per molecule in the liquid 
phase. Third column, entropy of fusion per 
molecule, AS/N, in units of Boltzmann's con- 
stant k. Fourth column, potential energy per 
molecule, Ut/N, in the liquid, in units of kT. 

System VI/Vs ln(pV/ S/Nk NkT) NkT 

Model 
liquid 1.19 -5.86 1.64 -8.6 

Argon 1.144 -5.88 1.69 -8.53 

is shown, undergoes a phase transition 
between a crystalline solid of volume 
V, and a liquid of volume V,. 

We may read directly from the 
figure the equilibrium pressure p at the 
temperature of the depicted isotherm, 
for it is the value of p at which the 
horizontal line segment is drawn in the 
equal-areas construction. Moreover, 
this may be done at any T, so in this 
way we derive the solid-liquid equilib- 
rium line in the p, T plane, like that 
in Fig. 2. Furthermore, applying known 
thermodynamic formulas to the low- 
density branch of any isotherm, we may 
also calculate the common value of the 
activity z of the liquid and the solid 
when they are in equilibrium at that 
temperature. Let z be normalized in 
such a way as to be asymptotic, say, 
to the number density p N/V in the 
ideal gas limit which is approached 
at low density. Suppose that at every 
temperature T the solid-liquid equilib- 
rium pressure p and activity z have 
been derived in the manner I have 
just outlined, and that p/kT and z 
are then compared. In general these 
two quantities will differ, but at one 
temperature they will be equal and 
that is the triple-point temperature 
of the model fluid, which I show as 
follows: At the triple-point of any 
liquid to which this theory might rea- 
sonably be applied, the vapor which is 
in equilibrium with the condensed 
phases is so dilute as to be effectively 
an ideal gas; therefore, by the stated 
normalization of the activity z, the 
equality p/kT= z must hold in this 
vapor; but, at the triple point, p has 

Table 2. Dimensionless forms of the coeffic- 
ient of thermal expansion a, the isothermal 
compressibility X, and the heat capacity at 
constant volume C, in the liquid phase at 
the triple-point. 

System Ta NkTX/V C,/Nk 
Model 

liquid 0.50 0.058 1.50 
Argon .366 .0495 2.33 
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the same value in all three phases, as 
do T and z, so that at the triple-point 
the equality p/kT = z must hold also 
in the condensed phases. Indeed, the 
condition that this equality hold with 
the p and z, which are the liquid-solid 
equilibrium p and z for the given T, 
then uniquely identifies the triple-point. 

All the thermodynamic properties of 
the model have now been derived or 
are readily accessible; but, so far, they 
still depend on two parameters, namely, 
the constant a in Eq. 11 and the sphere 
diameter b which is implicit in pl,,, 
However, if we content ourselves with 
calculating only dimensionless quanti- 
ties, and these evaluated only- at-- the 
triple-point, then the results are in- 
variant characteristics of the model, in- 
dependent of a and b. In Table 1, I 
quote what amount to the free energy 
and its first derivatives, in dimension- 
less form and evaluated at the triple- 
point. In the first row are the con- 
sequences of this model (12, 13) and in 
the second row are the experimental re- 
results for argon (14). Because -only di- 
mensionless quantities appear, the ex- 
perimental results apply not only to 
argon but also to any substance which 
obeys with argon a law of correspond- 
ing states; thus, these experimental re- 
sults are, with considerable accuracy, 
the same also for krypton and xenon, 
and with slightly less accuracy are the 
same for a very much wider class of 
substances. 

In the first column of Table 1 is 
the ratio of liquid to solid volume at 
the triple-point, V,//V,. In comparing 
the theoretical and experimental results 
for V,/V,, we must recognize that the 
1 preceding the decimal point is a 
significant figure. The theory is absolute 
and without parameters, containing no 
data beside the single curve giving p,h X 
b3/kT as a function of V/Nhb, which 
is provided by the computer calcula- 
tions of the equation of state of a three- 
dimensional hard-sphere system. That 
V, and V, are nearly equal, so that 1 
precedes the decimal point in V7/ V, 
is therefore a significant (if hard- 
ly surprising) result of the theory. In 
the second column is the logarithm 
of pVl/NkT at the triple-point, with 
V1/N the volume per molecule in the 
liquid phase. In the third column is the 
entropy of fusion per molecule, AS/N, 
in units of Boltzmann's constant k, 
evaluated at the triple-point, while in 
the fourth column is the potential 
energy U, of the liquid (the negative of 
the energy of vaporization) in units of 

NkT, again at the triple-point. The 
agreement between theory and experi- 
ment in Table 1 is sufficiently close so 
that we may conclude that the model 
of hard spheres in a uniform back- 
ground potential provides an essentially 
correct description of a liquid at its 
triple-point. 

The second and higher derivatives 
of the free energy, however, are finer 
probes than are the quantities in Table 
1, and they show the extent to which 
the model is an oversimplification. Be- 
cause, in the model, the background po- 
tential is independent of the tempera- 
ture, while the interactions of the hard 
spheres with each other contribute no 
potential energy to the system, the 
model has no configurational specific 
heat, and C, is just 3Nk/2, arising only 
from the kinetic energy of the spheres. 
But in a real liquid there is a configura- 
tional C,-, of magnitude about half that 
contributed by the momenta. The 
other second derivatives of the free 
energy, namely the coefficient of ther- 
mal expansion a and the isothermal 
compressibility X, also reflect the arti- 
ficialities of the model, though to a 
somewhat lesser extent. I quote in Table 
2 dimensionless forms of these three 
quantities, all evaluated in the liquid 
phase at the triple-point, both for the 
model liquid and for argon. 

That in a liquid near its triple-point 
the correlations due to the short-ranged 
repulsive forces are more significant 
than those due to the longer-ranged at- 
tractive forces, and that in a fluid 
near its critical point precisely the 
opposite is true, may be viewed as 
inevitable consequences of the fact that 
at the triple-point the density of a 
liquid is close to that of the correspond- 
ing solid, while typically the critical 
density is only one-third that. Never- 
theless, the extreme sharpness with 
which the distinction appears is most 
striking and unexpected. I believe it 
fair to conclude, in any event, that 
both halves of the thesis are now 
established, and that we can claim to 
know, if only in broad outline, the ways 
in which intermolecular forces manifest 
themselves in the macroscopic proper- 
ties of simple liquids. 
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Prostaglandins: Members 
of a New Hormonal System 

These physiologically very potent compounds of ubiqui- 
tous occurrence are formed from essential fatty acids. 
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In 1930 two New York gynecol- 
ogists, Kurzrok and Lieb (1), reported 
that the human uterus could react with 
either strong contractions or relaxation 
on instillation of fresh human semen. 
We now know that these effects were 
due to the prostaglandins present in the 
seminal plasma, but not until a few 

years later was it clearly recognized 
that the effect was due to the presence 
of these then-unknown compounds. 

Goldblatt (2) in England and von 
Euler (3) in Sweden independently 
discovered and studied the strong ac- 

tivity in seminal plasma that stimu- 
lates smooth muscle. The seminal 

plasma of several species was investi- 
gated by von Euler, who found similar 
effects in the seminal fluid of only 
monkey, sheep, and goat and in ex- 
tracts of vesicular glands of male sheep. 
He prepared lipid extracts of these 
glands and found the activity to be 
associated with the fraction containing 
the lipid-soluble acids. He named the 
active factor prostaglandin and made 
extensive studies of the physiologic and 
pharmacologic effects of these extracts 
(3). 

Isolation and Structure 

At the suggestion of von Euler in 
1947, I started work on the purification 
of a concentrate prepared (4) from 
glands of Icelandic sheep. With the 
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small amount of material available, 
using primarily the Craig countercur- 
rent procedure, I showed that the ac- 
tivity was associated with a fraction 
containing unsaturated hydroxy acids. 
Our present knowledge shows that the 
best concentrates consisted predomi- 
nantly of a mixture of prostaglandins 
(5). However, for technical and per- 
sonal reasons, the project was laid 
aside until 1956 when a program for 
the collection of frozen glands of sheep 
was organized in several countries in 
the Northern Hemisphere. 

The bioassay used for the isolation 
work utilized the smooth muscle-stim- 
ulating activity of the prostaglandins 
on rabbit duodenum-a sensitive but 
rather unspecific test. With this method 
of assay, an improved isolation proce- 
dure (6) led to the isolation of two 
prostaglandins, PGE1 and PGFla, in 
pure crystalline form (7). They both 
showed high physiologic activity (high- 
er than 10-9 gram per milliliter) on 
smooth muscle, but the former was 
the more active in reducing blood pres- 
sure in the rabbit (8). 

Analysis of the first few milligrams 
by ultramicroanalysis and mass spec- 
trometry proved that these substances 
were C20 compounds possessing a 
unique structure (Table 1). An early 
observation that proved very important 
was that PGE1 was of ketonic nature 
and that reduction with borohydride 
yielded two isomeric trihydroxy com- 
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observation that proved very important 
was that PGE1 was of ketonic nature 
and that reduction with borohydride 
yielded two isomeric trihydroxy com- 

pounds, one of which was identical 
with the isolated natural PGFia (7, 9). 

Prostaglandin PGE1 was very sensi- 
tive to alkali, which rapidly destroyed 
the biologic activity, with formation 
of a compound absorbing at 278 na- 
nometers. With more dilute alkali, an 
intermediate was first formed that ab- 
sorbed at 217 nanometers. The struc- 
ture finally elucidated by oxidative 
ozonolysis of PGE1, dihydro-PGE1, 
and the above-mentioned compounds 
absorbing at 217 and 278 nanometers. 
The reaction products were resolved 
by gas-liquid chromatography and 
identified directly by mass spectrom- 
etry (10). 

These studies showed the PGE1 mol- 
ecule to contain a five-membered ring, 
with one of the hydroxyls P to the keto 

group, which fact explains the lability 
to alkali. The second hydroxyl and the 
trans double bond were located in a 
side chain (Fig. 1). Treatment of 
PGE1 with weak base yields the a, 3- 
unsaturated ketone absorbing at 217 
nanometers, PGA1, (PGE1-217), that 
then rearranges to the doubly conju- 
gated ketone PGB, (PGE1-278). 

The stereochemistry was then eluci- 
dated by complete x-ray analysis of the 
bromo- and iodobenzoates of PGF1i 
(11). The correct absolute stereochem- 
ical configuration has been obtained by 
redetermination of the optical activity 
of the 2-hydroxy-heptanoate formed by 
oxidative ozonolysis (Fig. 2) (12). 

Two more compounds, PGE2 and 
PGE3, were subsequently isolated from 
the sheep glands. Mass spectrometry 
and nuclear magnetic resonance yielded 
most of the complete structure (13). 
They were identical with PGE, except 
that they contained, respectively, one 
and two additional cis double bonds 
(Fig. 2). The corresponding PGF2a 
and PGF3a were first isolated from 
sheep and bovine lung tissues, respec- 
tively (14). As to the structures of the 
six "primary" prostaglandins, the num- 
bering system of the basic "prostanoic 
acid" is indicated (Fig. 2) and a gen- 
eral system of nomenclature is ex- 
plained (Fig. 2, legend). 
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