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analysis has the unique characteristic 
of permitting the calculation of ex- 
tensive surface properties as a func- 
tion of temperature for an amount of 
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relatively, to expand as the reciprocal 
of the bulk liquid density raised to the 
two-third power. Thus, one should be 
able to calculate the extensive surface 
property of surface free energy for a 
certain fixed number of molecules by 
dividing surface tension,y, by d2/3. The 
number of molecules under identifica- 
tion and measurement is that number 
composing 1 cm2 of surface at 4?C; for, 
in dividing by d2/3, one implicitly as- 
sumes that the 4?C-area, when the 
density is 1.0000, is the fixed unit area 
under consideration. The quantity 
7/2/3 is the surface free energy AG, 
in ergs for this number of molecules. 

The three sets of surface tension data 
were obtained by three different meth- 
ods: Moser, by the ring mehod; Teitel'- 
baum, by the maximum bubble pres- 
sure method; and Claussen, by rise in 
a capillary of 0.30 mm diameter. The 
first two sets of data were for tensions 
of water in contact with air, while 
Claussen's is for water in contact with 
helium. The Moser and Claussen data 
were normalized linearly to agree with 
the TeiteFbaum data at 25?C, in order 
to eliminate systematic errors in calibra- 
tion or measurement. 

The method of plotting the surface 
tension data follows from standard 

practice in chemical thermodynamics. 
A consideration of the equation 

AGs=zAHs- TASs (1) 

where AG, (= y/d2/3), AHs, and AS, 
are the free energy, heat, and the en- 
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Fig. 1. Surface free energy versus temperature for liquid water. 
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tropy of surface formation, respectively, 
reveals two equivalent methods of 
plotting the surface tension data: 

2/ = AHs - TASs 
W/-3 - 

(2) 

y/ H 
(1\ ) aS (3) 

T - 

A plot of y/d2/3 against T(?C) pos- 
sesses a slope of -ASS, shown in Fig. 
1. A plot of 

/d?/K against T, OK T, OK 

possesses a slope of AHs, shown in Fig. 
2. 

The linearity of these plots is clearly 
evident. The Moser data were further 
subjected to least-squares analysis and 
the standard deviation from a straight 
line was 0.04 percent, which is less 
than one-half of his claimed er- 
ror of 0.1 percent. The main part of 
the data of Teitel'baum and the main 
part of my data were found to be 
within 0.05 percent of this Moser best- 
fit line; the larger negative deviations 
of a few low temperature points, clear- 
ly evident in Fig. 1, may be suspect 
of influence by impurities. There was 
no statistically significant tendency for 
curvature in the Moser data; this data 
seemed of highest quality. 

This smooth linear plot is in sharp 
contrast to recent speculations (4) 
that the surface tension may possess 
discontinuous variations with tempera- 
ture. 

The least-squares analysis of the data 
shown in Figs. 1 and 2 permits one 
to give the following assessment of the 
three extensive thermodynamic proper- 
ties on the basis of the 4?C-cm2 quan- 
tity of surface: 

AGs = + 75.74 erg/4?-cm2 (at 0?C) 
AHs = + 115.42 erg/4 -cm" 
ASs = + 0.14530 erg/?K/4?-cm2 
Substitution of these values into Eqs. 

2 and 3 gives the following best-fit 
equations for the plots in Figs. 1 and 
2, respectively. 

-' = 75.74-0.14530 T,C (4) 

/d/ = 115.42 ( )0.14530 (5) 

If one should later decide that an- 
other absolute value of surface tension 
is more correct than the Teitel'baum 
value chosen as standard for the cal- 
culations above, then one would be 
required to make the same percentage 
change in all calculated constants of 
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Fig. 2. Surface free energy divided by the absolute temperature versus the reciprocal 
of the absolute temperature for liquid water. 

the equations. This follows from the 
assumption that all corrections in sur- 
face tension involve the same linear 
constant, or ycorr. - yTeitel. multiplied 
by a constant. With Moser's possibly 
more precise value of 72.87 dynes/cm 
for the surface tension at 18?C, y/d2/3 
becomes 72.94, and the more exact 
constants for the equations become 
0.26 percent smaller in magnitude: 

AGs-= + 75.54 erg/40-cm2(at 0?C) 
AHs = + 115.12 erg/4?-cm2 
ASs = + 0.14492 erg/ ?K/4?-cm2 

The molar surface area may be 
determined by assuming with Guastalla 
(5) that (i) the surface is identical to 
a puckered hexagonal plane as found 
in ordinary ice, a plane normal to the 
c axis, and that (ii) only half of these 
molecules are exposed surface mole- 
cules with residual, unsatisfied valences. 
The surface area per surface molecule, 
which is identical to per unit hexagon, 
then becomes about 19.5 X 10-16 cm2, 
and the molar surface area becomes 
1.1745 X 109 cm2. The molar thermo- 
dynamic quantities then become 

AGs = + 2120 cal/mol of surface at (0?C) 
AHs = + 3231 cal/mol of surface 
ASs = + 4.067 e.u./mol of surface 

These molar quantities will be 
further refined when the exact inter- 
atomic distances and angles in the sur- 
face are known. 

The figure of 19.5 A2 area is a 

characteristic of many investigations 
of fatty acid films, this being approxi- 
mately the area of one fatty acid mole- 
cule adsorbed on the surface. This 
figure was originally attributed also to 
a characteristic of water structure by 
Guastalla (5). It is my opinion that 
this fact has been neglected, that not 
only the area of the fatty acid mole- 
cule but also the water structure con- 
tributes to this common 19.5 A2 area 
determination, and that the use of film 
pressure data may permit an accurate 
assessment of the dimensions of sur- 
face water structure. By this means it 
is believed that one may be able to 
determine the proportionality factor 
between thermodynamic properties for 
one 4?C-cm2 of surface and one mole 
of surface, thus permitting the calcula- 
tion of precise molar surface proper- 
ties. 
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