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How Long Is the Coast of Britain? 

Statistical Self-Similarity and Fractional Dimension 

Abstract. Geographical curves are so involved in their detail that their lengths 
are often infinite or, rather, undefinable. However, many are statistically "self- 
similar," meaning that each portion can be considered a reduced-scale image of 
the whole. In that case, the degree of complication can be described by a quantity 
D that has many properties of a "dimension," though it is fractional; that is, it 
exceeds the value unity associated with the ordinary, rectifiable, curves. 

Seacoast shapes are examples of high- 
ly involved curves such that each of 
their portion can-in a statistical sense 
-be considered a reduced-scale image 
of the whole. This property will be re- 
ferred to as "statistical self-similarity." 
To speak of a length for such figures 
is usually meaningless. Similarly (1), 
"the left bank of the Vistula, when 
measured with increased precision, 
would furnish lengths ten, hundred or 
even thousand times as great as the 
length read off the school map." More 

generally, geographical curves can be 
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considered as superpositions of features 
of widely scattered characteristic size; 
as ever finer features are taken account 
of, the measured total length increases, 
and there is usually no clearcut gap be- 
tween the realm of geography and de- 
tails with which geography need not be 
concerned. 

Quantities other than length are thus 
needed to discriminate between vari- 
ous degrees of complication for a geo- 
graphical curve. When a curve is self- 
similar, it is characterized by an expo- 
nent of similarity, D, which possesses 
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Fig. 1. Richardson's data concerning measurements of geographical curves by way of 
polygons which have equal sides and have their corners on the curve. For the circle, 
the total length tends to a limit as the side goes to zero. In all other cases, it increases 
as the side becomes shorter, the slope of the doubly logarithmic graph being in absolute 
value equal to D-1. (Reproduced from 2, Fig. 17, by permission.) 
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many properties of a dimension, though 
it is usually a fraction greater than 
the dimension 1 commonly attributed 
to curves. We shall reexamine in this 
light some empirical observations by 
Richardson (2). I propose to interpret 
them as implying, for example, that the 
dimension of the west coast of Great 
Britain is D = 1.25. Thus, the so far 
esoteric concept of "random figure of 
fractional dimension" is shown to have 
simple and concrete applications and 
great usefulness. 

Self-similarity methods are a potent 
tool in the study of chance phenomena, 
including geostatistics, as well as eco- 
nomics (3) and physics (4). In fact, 
many noises have dimensions D con- 
tained between 0 and 1, so that the 
scientist ought to consider dimension 
as a continuous quantity ranging from 
0 to infinity. 

Returning to the claim made in the 
first paragraph, let us review the meth- 
ods used when attempting to measure 
the length of a seacoast. Since a geog- 
rapher is unconcerned with minute de- 
tails, he may choose a positive scale G 
as a lower limit to the length of geo- 
graphically meaningful features. Then, 
to evaluate the length of a coast be- 
tween two of its points A and B, he 
may draw the shortest inland curve 
joining A and B while staying within 
a distance G of the sea. Alternatively, 
he may draw the shortest line made 
of straight segments of length at most 
G, whose vertices are points of the 
coast which include A and B. There are 
many other possible definitions. In prac- 
tice, of course, one must be content 
with approximations to shortest paths. 
We shall suppose that measurements 
are made by walking a pair of dividers 
along a map so as to count the number 
of equal sides of length G of an open 
polygon whose corners lie on the curve. 
If G is small enough, it does not matter 
whether one starts from A or B. Thus, 
one obtains an estimate of the length 
to be called L(G). 

Unfortunately, geographers will dis- 
agree about the value of G, while L(G) 
depends greatly upon G. Consequently, 
it is necessary to know L(G) for several 
values of G. Better still, it would be 
nice to have an analytic formula link- 
ing L(G) with G. Such a formula, of 
an entirely empirical character, was pro- 
posed by Lewis F. Richardson (2) but 
unfortunately it attracted no attention. 
The formula is L(G) -- M G-D, where 
M is a positive constant and D is a 
constant at least equal to unity. This 
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D, a "characteristic of a frontier, may 
be expected to have some positive cor- 
relation with one's immediate visual 
perception of the irregularity of the 
frontier. At one extreme, D = 1.00 for 
a frontier that looks straight on the 
map. For the other extreme, the west 
coast of Britain was selected because 
it looks like one of the most irregular 
in the world; it was found to give D 
= 1.25. Three other frontiers which, 
judging by their appearance on the 
map were more like the average of the 
world in irregularity, gave D = 1.15 
for the land frontier of Germany in 
about A.D. 1899; D = 1.14 for the 
land frontier between Spain and Portu- 
gal and D = 1.13 for the Australian 
coast. A coast selected as looking one 
of the smoothest in the atlas, was that 
of South Africa and for it, D = 1.02." 

Richardson's empirical finding is in 
marked contrast with the ordinary be- 
havior of smooth curves, which are 
endowed with a well-defined length 
and are said to be "rectifiable." Thus, 
to quote Steinhaus (1) again, "a state- 
ment nearly adequate to reality would 
be to call most arcs encountered in 
nature not rectifiable. This statement 
is contrary to the belief that not recti- 
fiable arcs are an invention of mathe- 
maticians and that natural arcs are 
rectifiable: it is the opposite that is 
true." 

I interpret Richardson's relation as 
contrary to the belief that curves of 
dimension greater than one are an 
invention of mathematicians. For that, 
it is necessary to review an elementary 
feature of the concept of dimension 
and to show how it naturally leads to 
the consideration of fractional dimen- 
sions. 

To begin, a straight line has dimen- 
sion one. Hence, for every positive 
integer N, the segment (0 ' x < X) 
can be exactly decomposed into N 
nonoverlapping segments of the form 
.[(n-l)X/N < x < nX/N], where n 
runs from 1 to N. Each of these parts 
is deducible from the whole by a simi- 
larity of ratio r(N) = 1/N. Similarly, 
a plane has dimension two. Hence, for 
every perfect square N, the rectangle 
(0 < x < X; 0 < y < Y) can be de- 
composed exactly into N nonoverlapping 
rectangles of the form [(k-1)X/ V/N 
< x < kX/ wNr (h-1)Y/ VN f y < 
hY/ VN/, where k and h run from 1 
to VN. Each of these parts is deducible 
from the whole by a similarity of ratio 
r(N) = 1/ /TN More generally, when- 
ever N1/D is a positive integer, a D- 
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Fig. 2. Nonrectifiable self-similar curves 
can be obtained as follows. Step 1: 
Choose any of the above drawings. Step 
2: Replace each of its N legs by a curve 
deduced from the whole drawing through 
similarity of ratio 1/4. One is left with 
a curve made of N2 legs of length (1/4)2. 
Step 3: Replace each leg by a curve ob- 
tained from the whole drawing through 
similarity of ratio (1/4)2. The desired 
self-similar curve is approached by an 
infinite sequence of these steps. 

dimensional rectangular parallelepiped 
can be decomposed into N parallelepi- 
peds deducible from the whole by a 
similarity of ratio r(N) - 1/N1/D. 
Thus, the dimension D is characterized 
by the relation D = - log N/log r(N). 

This last property of the quantity 
D means that it can also be evaluated 
for more general figures that can be 
exactly decomposed into N parts such 
that each of the parts is deducible from 
the whole by a similarity of ratio r(N), 
or perhaps by a similarity followed by 
rotation and even symmetry. If such 
figures exist, they may be said to have 
D = -log N/log r(N) for dimension 
(5). To show that such figures exist, 
it suffices to exhibit a few obvious vari- 
ants of von Koch's continuous non- 
differentiable curve. Each of these 
curves is constructed as a limit. Step 
0 is to draw the segment (0, 1). Step 
1 is to draw either of the kinked curves 
of Fig. 2, each made up of N intervals 
superposable upon the segment (0, 1/4). 
Step 2 is to replace each of the N seg- 
ments used in step 1 by a kinked curve 
obtained by reducing the curve of step 1 
in the ratio r(N) = 1/4. One obtains 
altogether N2 segments of length 1/16. 

Each repetition of the same process 
adds further detail; as the number of 
steps grows to infinity, our kinky curves 
tend toward continuous limits and it 
is obvious by inspection that these lim- 
its are self-similar, since they are ex- 
actly decomposable into N parts de- 
ducible from the whole by a similarity 
of ratio r(N) = 1/4 followed by trans- 
lation. Thus, given N, the limit curve 
can be said to have dimension D = 
-log N/log r(N) = log N/log 4. 
Since N is greater than 4 in our ex. 
amples, the corresponding dimensions 
all exceed unity. Let us now consider 
length: at step number s, our approxi- 
mation is made of N8 segments of 
length G = (/4)s, so that L = (N/4)s = 
G1-.. Thus, the length of the limit 
curve is infinite, even though it is a 
"line." (Note that it is not excluded for 
a plane curve to have a dimension equal 
to 2. An example is Peano's curve, 
which fills up a square.) 

Practical application of this notion 
of dimension requires further consid- 
eration, because self-similar figures are 
seldom encountered in nature (crystals 
are one exception). However, a sta- 
tistical form of self-similarity is often 
encountered, and the concept of di- 
mension may be further generalized. 
To say that a (closed) plane figure is 
chosen at random implies several defi- 
nitions. First, one must select a family 
of possible figures, usually designated 
by 0. When this family contains a finite 
number of members, the rule of ran- 
dom choice is specified by attributing 
to each possible figure a well-defined 
probability of being chosen. However, 
f2 is in general infinite and each figure 
has a zero probability of being cho- 
sen. But positive probabilities can be 
attached to appropriately defined 
"events" (such as the event that the 
chosen figure differs little-in some 
specified sense-from some specified 
figure). 

For the family f2, together with the 
definition of events and their proba- 
bilities, to be self-similar, two condi- 
tions are needed. First, each of the 
possible figures must be constructible 
by somehow stringing together N fig- 
ures, each of which is deduced from a 
possible figure by a similarity of ratio 
r; second, the probabilities must be so 
specified that the same value is ob- 
tained whether one selects the overall 
figure at one swoop or as a string. (The 
value of N may either be arbitrary, or 
chosen from some specific sequence, 
such as the perfect squares relative to 
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non random rectangles, or the integral 
powers of 4, 5, 6, or 7 encountered 
in the curves built as in Fig. 2.) In 
case that the value of r is specified 
by choosing N, one can consider 
-log N/log r a similarity dimension. 
More usually, however, given r, N will 
take different values for different figures 
of Q. As one considers points "suffi- 
ciently far" from each other, the de- 
tails on a "sufficiently fine" scale may 
become asymptotically independent, in 
such a way that -log N/log r almost 
surely tends to some limit as r tends 
to zero. In that case, this limit may 
be considered a similarity dimension. 
Under wide conditions, the length of 
approximating polygons will asymptot- 
ically behave like L(G) - G1-D. 

To specify the mathematical condi- 
tions for the existence of a similarity 
dimension is not a fully solved prob- 
lem. In fact, even the idea that a geo- 
graphical curve is random raises a 
number of conceptual problems famil- 
iar in other applications of random- 
ness. Therefore, to return to Richard- 
son's empirical law, the most that can 
be said with perfect safety is that it is 
compatible with the idea that geo- 
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The island of Barbados in the West 
Indies emerged throughout the Pleisto- 
cene. During this emergence, fringing 
and barrier reefs formed from time to 
time around the island and resulted in 
the formation of a terraced "coral cap." 
Eighteen major reef tracts of different 
relative ages have been defined, the 
older reefs being located at the higher 
elevations (1). 

Thirty road cuts through the reef 
terraces were examined to study the 
coral composition of these reefs. On 
traverses made perpendicular to the 
reef tract trends, from the base up to 
the crest of the terraces, a zonation of 
corals-largely in growth position- 
can be observed (Fig. 1). The zonation 
is composed of four major elements: 
(i) the coral-head zone, (ii) the 
Acropora cervicornis zone, (iii) the 

Acropora palmata zone, and (iv) the 
rear zone. 
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graphical curves are random self-similar 
figures of fractional dimension D. Em- 

pirical scientists having to be content 
with less than perfect inductions, I fa- 
vor the more positive interpretation 
stated at the beginning of this report. 

BENOIT MANDELBROT 
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Thomas J. Watson Research Center, 
Yorktown Heights, New York 10598 
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A distinct advantage in the study of 
uplifted reefs is that the deep-water 
communities can be examined in as 
great detail as those of the reef crest. 
Exposures at the base of the terraces 
are composed largely of coral species 
which tend to form massive coral 
heads. At several localities, Montastrea 
annularis makes up as much as 50 per- 
cent of the total exposure. However, at 
other localities, M. annularis composes 
only 10 to 15 percent of the total ex- 
posure and Siderastrea siderea, Sideras- 
trea radians, Diploria strigosa, and Di- 
ploria labyrinthiformis are equally im- 
portant. Numerous other coral species 
are also present in the coral-head zone, 
but they rarely exceed 5 percent of the 
total exposure. These include Porites 
astreoides, Agaricia agaricites, Favia 
fragum, Meandrina meandrites, Mean- 
drina brazilensis, Colpophyllia natans, 
Montastrea cavernosa, and more deli- 
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cately branched types such as Porites 
porites, Eusmilia fastigiata, and Madra- 
cis sp. The total coral content of some 
exposures in the coral-head zone ex- 
ceeds 50 percent with the remainder 
being infilling matrix. The individual 
species occur in clumps with first one 
species being important and then 
another. Coralline algae are not abun- 
dant in this zone but at times form 
thick crusts on the upper surfaces of 
the coral heads. 

Moving upward and back into the 
reef terrace, the zone of coral heads 
gives way gradually to a zone com- 
posed almost exclusively of Acropora 
cervicornis (Fig. 3). At times, A. cervi- 
cornis makes up as much as 75 to 80 
percent of the total exposure. The aver- 
age diameter of the individual branches 
is 2.0 to 2.5 cm although diameters in 
excess of 5 cm have been noted. Coral- 
line algae often form thin coatings on 
the branches. 

Near the upper portions of the A. 
cervicornis zone, Montastrea annularis 
along with Siderastrea sp. and Diploria 
sp. frequently are seen scattered in 
among the rich A. cervicornis. The 
M. annularis here has the growth form 
of heads and tall, thin columns or 
"pipes." At a few localities, thick de- 
velopments (6 to 9 m) of M. annularis 
heads and pipes occur at the position 
normally occupied by the upper por- 
tions of the A. cervicornis zone. Such 
occurrences appear to be analogous 
to the "buttress zone" reported for Re- 
cent West Indian reefs along the north 
coast of Jamaica (2). 

Near the crest of the reef terraces, 
the A. cervicornis zone grades rather 
rapidly into a zone which is composed 
almost exclusively of Acropora pal- 
mata (Fig. 4). Some of the reef ter- 
races on Barbados, however, do not 
show the development of an A. pal- 
mata zone. The A. palmata increases in 
size and overall abundance towards the 
central portions of the zone where it 
reaches a maximum development, often 
making up to 70 percent of the ex- 
posure. For the reef terraces examined, 
the zone averages 75 m wide. Coralline 
algae are most abundant in this zone, 
and they often form heavy crusts on the 
massive branches of A. palmata. The 
algal crusts are particularly thick on 
the upper surface of the branches with 
crusts 5 to 8 cm thick not being unusual. 
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Moving back from the crest of the 
reef terrace, A. palmata gradually de- 
creases in importance and is replaced 
by a wide variety of corals. This variety 
is comparable to that found in the 
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Zonation of Uplifted Pleistocene Coral Reefs 

on Barbados, West Indies 

Abstract. The coral species composition of uplifted Pleistocene reefs on Barba- 
dos is very similar to Recent West Indian reefs. Acropora palmata, Acropora 
cervicornis, and Montastrea annularis are quantitatively the most important of 
the coral species. 
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