
Pattern Classification by 
Adaptive Machines 

Patterns are categorized by the use of 
fixed and adaptive networks. 

Charles A. Rosen 

Man has been striving for centuries 
to conceive and fabricate machines 
to replicate or improve his own per- 
formance. In the past 200 years he 
has made astonishing progress in first 
replacing and then exceeding his pure- 
ly mechanical abilities. In the past 20 
years, new developments in a host of 
scientific fields ranging from biology 
to computer technology have made 
possible exciting new approaches to 
the far more difficult task of supple- 
menting or ultimately supplanting the 
intelligent capabilities of man. 

There is no universally accepted defi- 
nition of intelligence (1). We can de- 
scribe an intelligent automaton opera- 
tionally as a machine that can per- 
form tasks that normally require al- 
most continuous human control and 
intervention. Man's pattern recognition 
process-that is, his ability to select, 
classify, and abstract significant infor- 
mation from the sea of sensory in- 
formation in which he is immersed- 
is a vital part of his intelligent be- 
havior. In the past 10 years pattern 
recognition has become a major focus 
of research by scientists working in 
the field of artificial intelligence. 

In its most general form, pattern 
recognition is a complex of functions 
operating at many levels. At the low- 
est level it consists of the ability, 
shared by the simplest biological spe- 
cies, to sense, select, combine, and 
identify environmental data necessary 
to preserve life and to continue the 
species. At a much higher level, man 
is able to use advanced forms of pat- 
tern recognition to deal with highly 
abstracted information. This function 
is embedded in a complex of mental 
processes that includes logic, induc- 
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tion, association, and invention, among 
others. At present knowledge of pat- 
tern recognition is essentially at the 
first level; a relatively small but grow- 
ing effort is being devoted to more 
difficult problems involving both ele- 
mentary pattern recognition and sim- 
ple logical processing, both woven in- 
to a single system. 

At the lowest level, general pattern 
recognition reduces to pattern classifi- 
cation, which consists of techniques 
to separate groups of objects, sounds, 
odors, events, or properties into classes, 
based on measurements made on the 
entities being classified. This article 
is primarily concerned with pattern 
classification, with a brief introduction 
to methods and concepts being ex- 
plored to attack the more difficult prob- 
lems in pattern recognition. 

Effective techniques for pattern 
classification have been developed; 
these techniques represent a small but 
significant part of pattern recognition 
systems. No general methods now 
exist for either the selection of ap- 
propriate measurements or the logical 
embedding of classification techniques 
in an overall recognition system. These 
*are the areas of research today. 

Processing and Categorization 

In dealing with the query "Is this a 
man or a mouse?" we can recognize 
at least two distinguishable processes 
that are themselves so closely related 
that it is often difficult to clearly de- 
fine the domain of each. For most 
classification problems it is adequate 
to perform two operations: first, to 
select a set of measurements (features), 
such as size, shape, color, odor, number 
of feet, absence or presence of tails 
and clothing, and the like; and second, 

to use these features either to dis- 
tinguish between this man and this 
mouse, or, more generally, to define 
the classes of mice and men. For the 
more difficult query "Is this a boy 
or a girl?" it may be necessary either 
to select a more complex set of dis- 
tinguishing features, or to augment the 
list of simple features. The method, 
and the form of the machine which 
uses the method to classify the phe- 
nomena with the selected features, 
can be the same for answering both 
questions. The pattern classifier can 
be divided into two subsystems: the 
data filter and the categorized. Data 
filtering consists of selecting distinguish- 
ing features and representing them in 
terms of sets of real numbers, each 
set being termed a pattern. Each pat- 
tern is categorized by being assigned 
to one of several classes. 

While there are a number of meth- 
ods for the design of categorizers, 
there is no general method to select 
the distinguishing features. At present 
the data filter is designed with empiri- 
;cal methods 'based on, "common 
sense," trial and error, educated 
guesses, imitation of biological data 
filters, or statistical analysis (2, 3). As 
the 'problem becomes more complex, 
more features are usually required. It 
becomes economically infeasible, how- 
ever, to use all the information avail- 
able to describe a given entity. In 
fact, such all-inclusive descriptions will 
usually degrade the performance of 
the categorizer by contributing irrele- 
vant information that can be lumped 
together with other disturbances as 
"noise." In this, as in other informa- 
tion processes, significant features or 
useful information is masked by the 
irrelevant data. 

We do not yet know whether there 
are any general methods that can be 
used to design data filters. It is pos- 
sible that the selection of features for 
any given domain of pattern classifica- 
tion is relevant to that domain alone. 
It thus becomes important to determine 
the relative efficiency of features se- 
lected by any method. Some statistical 
methods can be used to test the rela- 
tive importance of selected features. 
These methods become unwieldy as 
the number of such features increases. 
Newer methods based on adaptive 
techniques and evolutionary methods 
of generation and testing of features 
are promising (4, 5). 

Much of the future research in pat- 
tern classification will be devoted to 
understanding and elaborating the role 
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of the data filter, devising adequate 
means of testing the effectiveness of 
features, and finally, integrating data 
filter and classifier into one working 
system. 

There are two general approaches 
in the design of a categorized. Both 
approaches usually require a -statisti- 
cally large sample of correctly identi- 
fied and labeled patterns represented 
by appropriate features. The first ap- 
proach assesses the relative impor- 
tance of the features by statistical 
means, with known or assumed probabil- 
ities of occurrence of each feature, 
or combinations of features in the pat- 
terns comprising each category. With 
known or derivable statistics, a cate- 
gorizer can be designed with fixed 
internal organization to yield results 
with minimum errors (6). In many, if 
not most cases, neither the probability 
distributions of the features nor any 
simple assumptions about the form or 
nature of the distributions are valid, 
and more powerful techniques are re- 
quired. Exploration of these techniques 
has led to the second general meth- 
od: the adaptive network approach. In 
its ideal form, a machine composed 
of adaptive or alterable networks would 
automatically and progressively change 
its internal organization as a result of 
being "trained" by exposure' to a suc- 
cession of correctly classified and la- 
heled patterns. In this case there is 
no prior knowledge of the relative im- 
portance or distribution of the fea- 
tures comprising each pattern. After 
a training or learning process, the final 
organization would effect, ideally with 
minimum error, the classification of 
patterns that are not contained in the 
training set but are quite similar to 
them. The ideal machine does not 
exist, not even biologically. Some rela- 
tively simple structures have been 
made (7, 8), and many more have 
been simulated on a digital computer, 
which do, in fact, progressively alter 
their internal structure with experience. 
These structures perform acceptably 
with certain classes of problems. 

Pattern Representation 

Suppose our problem is to distinguish 
between boys and girls on the basis 
of a single measurement or feature, 
and we choose the average length of 
hair as the -distinguishing feature. If 
we further-restrict ourselves to youths 
between 8 and 16 years old, and take 
equal numbers of boys and girls as 
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our samples, we might obtain the 
smoothed out curves shown in Fig. 1, 
which shows the distribution of boys 
and girls as a function of the average 
length of hair. In this highly idealized 
case the curves are familiar bell- 
shaped (Gaussian) distributions. Clear- 
ly, a classification scheme that would 
assign the label "boy" to any youngster 
with average hair length less than arbi- 
trary length 3, and the label "girl" 
for hair length greater than 3, would 
yield a minimum number of errors 
'(9). 

A more realistic set of curves might 
be as shown in Fig. 2, which illustrates 
that a small number of boys today 
consider long hair fashionable, and some 
girls prefer short hair. Minimum num- 
ber of errors can no longer be ob- 
tained by separating the classes by 
simple means and, although it is pos- 
sible to find an optimum solution by 
statistical methods, this solution will 
yield a high number of errors. Clearly, 
more identifying features are neces- 
sary. Suppose we added another fea- 
ture, for example, a number represent- 
ing the ratio of shoulder to hip size. 

It would be difficult to illustrate this 
new situation in. the same manner as 
shown in Figs. 1 and 2. A three- 
dimensional space is required in 
which two-dimensional surfaces are 
drawn. A more geometric representa- 
tion is shown in Fig. 3, one which 
leads directly to a useful algebraic 
description of each pattern. Again, for 
simplicity this figure is a highly ideal- 
ized representation. The pattern B is 
a solid dot representing one boy with 
hair 1.5 arbitrary units long and a 
ratio of shoulder to hip size of 1.3. 
Similarly the pattern G is an open 
circular dot representing a girl with 
hair length 4 arbitrary units, ratio of 
shoulder to hip size 1.1; these two 
samples can be represented algebraical- 
ly: B(1.5,1.3); G(4,1.1). To represent 
patterns geometrically with more fea- 
tures would require higher dimensional 
spaces. To represent them algebraically 
merely requires adding corresponding 
sets of numbers for additional features. 
Thus if one added as a new identify- 
ing feature the pitch of voice on an 
arbitrary scale of 1 to 4 spread over 
a range from. bass to alto, the boy 
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would be represented by: B(1.5,1.3,1). 
In general 'a boy to be represented 
by n features would be described: 
B(XlIx. . . . xI), where xl, x2, . . . x1 
are numbers associated with the fe-a- 
tures, and the whole expression (a 
vector representation) would represent 
one pattern and its label (boy). The 
n-dimensional vector would then be- 
come a single point in an n-dimen- 
sional geometric space. 

In Fig. 3, the pattern classification 
problem is to find some means of clas- 
sifying a new point (indicated by ? 
in the figure) as boy or girl. One meth- 
od that can be used would be to find 
a separating line, AA', which divided 

the plane into two regions, one region 
assigned to each class, with a mini- 
mum number of errors. In this case 
the, new point can clearly be classified 
as a girl. 

The Adaptive Categorizer 

Assuming that we have selected and 
made some measurements which repre- 
sent each of the patterns, let us examine 
more closely some of the problems of 
final classification. For simplicity we 
will deal with two classes of patterns 
to be distinguished from each other 
on the basis of only two features. Fig- 
ure. 4 shows the results of plotting 
the known (correctly labeled) pat- 
terns. Each pattern is shown as a sin- 
gle point in a two-dimensional space; 
the coordinates of the point are the 
measured values of the two features rep- 
resenting that pattern. Each class of 
pattern is represented by a cluster of 
scattered points, since the values of 
the distinguishing features are not iden- 
tical for each pattern in that class. 
(In the boy-girl classification example, 
the average length of hair could well 
be, different for each boy.) In the ideal 
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case, the cluster representing each class 
would reduce to a single point, indi- 
cating that there existed a set of fea- 
tures which were identical for each 
member of that class. Such instances 
can be contrived, but they rarely occur 
in practice. 

In this example the patterns (points) 
in each class, although scattered, form 
two fairly well-defined clusters; these 
clusters can evidently be separated by 
drawing the line AA', which divides 
the space into two regions. All points 
above this line belong to class one, all 
points below belong to class two. If 
two points representing two previous- 
ly unclassified patterns 

- 
x2 are 

plotted, then xl would be assigned to 
class one, and x2 assigned to class two. 
The line AA' is one of many that can 
be drawn to separate the clusters and 
in fact it need not be a straight line, 
but can be a segment of a higher order 
curve such as a circle, parabola, ellipse, 
or the like. However, the curve that 
can be represented most easily is a 
straight line, and if the cluster shapes 
are such as to require a curved line 
for separation, the curved line can be 
approximated by several straight line 
segments. 

Shown schematically in Fig. 5 is a 
threshold logic network, which, on the 
basis of samples of known and labeled 
patterns of each class, can use one of 
the many straight line solutions to the 
two-dimensional problem described in 
Fig. 4. The network is operated in 
three steps: (i) A pattern, represented 
by two numerical measurements xl, x2, 
and a constant, C, is presented to the 
network input terminals one, two, and 
three. (ii) These inputs are "weighted" 
by each terminal and multiplied by a 
variable quantity of weight W1. They 
yield the products xlW1, x2 W2, and 
CW3, which are then added together al- 
gebraically to form a linear combina- 
tion of weighted input values. These 
weights will be altered progressively as 
the network is "trained." (iii) The sum 
(X1W1 + X2W2 + CW3) is presented 
to a threshold device which determines 
whether or not it is greater than the 
threshold, 0-that is, whether this sum 
is positive or negative (10). If the sum 
is positive we can arbitrarily assign 
that pattern to class one; if the sum 
is negative, or 0, the pattern is as- 
signed to class two. The output need 
therefore have only two values, which 
are here arbitrarily chosen as 1 or 0. 

The object of the game is to find a 
set of weights W1, W2, and W3, such 
thzat this network will give the output 

SCIENTCE, VOL. 156 



SETS OF 
VARIABLE 
WEIGHTS 

_oSUMMERS 

MAXIMUM 
I \ \SELECTOR 

INPUT 
PATTERN 2 OUTPUT 

I />4 / CLASS I 1rl 
(c ch / or DI1 

Fig. 7. Linear machine. 

1, for all patterns known to be in class 

one, and the output 0 for all class two 

patterns. (Changing the values W1, 

W2, and W3 is equivalent to rotating 

and translating the line AA' in Fig. 4). 

One training procedure is the error- 

correction method. (i) Each pattern 

from a set of known patterns, called 

the training set, is presented sequential- 

ly to the network. (ii) If the network 

output correctly classifies the known 

pattern, no change is made and the 

network passes on to the next pattern. 

(iii) If the pattern is incorrectly classi- 

fied then each weight is automatically 

changed by a small amount to cor- 

rect the wrong response. 
With these rules, the network is 

presented sequentially with all the pat- 

terns of the training set; corrections 

to the weights are made only on er- 

rors. The whole procedure is then re- 

peated with the same training set. 

Repetition ceases either when there are 

no errors or when an acceptably 

small number of errors are produced 

in a complete pass through the train- 

ing set. If there are no errors, then 

the process is said to have converged 
and the classes are described as linearly 

separable. Geometrically (Fig. 4), this 

means that the scatter of the two clus- 

ters permitted a straight line (AA') to 

be drawn which accurately separated 

all points into two desired classes. 

The basic ideas incorporated in the 

above procedure were first proposed 

and analyzed by Rosenblatt (7) and 

later elaborated on by Widrow (11). 
If the classes are linearly separable 

this procedure is guaranteed to con- 

verge in a finite number of repeti- 

tions. In other words, a solution is 

guaranteed, if one exists. 

Multiple Classes 

This procedure/ may be extended to 
problems that involve more than two 
classes. Figure 6 shows an arrangement 
whereby the addition of another thresh- 
old logic network, operating in paral- 
lel at the input with the original net- 
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work, enables classification of as many 
as four classes. The two sets of out- 

puts (0 or 1 from each of the net- 
works) can be arbitrarily arranged to 
form four distinct output codes, name- 
ly 00, 01, 10, and 11, each of which 
may represent a class. For example 
the class represented by code 01 means 
that network one has a desired output 
of 0, and network two has simulta- 
neously a desired output of 1. The train- 
ing procedure (error-correction) is un- 
changed; each of the two networks 
is treated in precisely the same way 
as for the two-class case. A network's 
weights are altered if and only if its 
particular binary output is wrong. 
Thus if a training pattern produces an 
output of 01, while the correct output 
should be 00, the output of network 
one is correct and its weights will re- 
main unchanged; the output of net- 
work two is incorrect and its weights 
will be adjusted to make its output 
correct. 

The maximum number of assign- 
able code words, and therefore classes, 
increases exponentially, as 2n with the 
number, n, of threshold logic net- 
works. There is no known analytical 
procedure to assign a particular code 
word to a particular class, and the dif- 
ficulty in separating many classes may 
be increased enormously by a poor 
choice of code words for the different 
classes. A number of schemes use mod- 
ern coding techniques, which general- 
ly improve performance by using less 
than the maximum number of possi- 
ble codes for a given number of thresh- 
old logic networks. Other machine 
organizations avoid this problem. 

The Linear Machine 

The linear machine eliminates this 
coding problem entirely and has shown 
excellent performance in multiclass 
classification problems (8, 13). Figure 
7 shows a linear machine composed 
of three parallel networks of adaptive 
elements designed for the categoriza- 
tion of three classes of patterns. Each 
network accepts the input pattern com- 
posed of two measured features, x1 
and x2, and a constant, C. These 
values are multiplied by three sets 
of variable weights, and the sums are 
compared in a device which selects 
the largest sum. Bach network is as- 
signed to one class. A presented pat- 
tern is identified as belonging to the 
class of the network with the maxi- 
mum sum. The combination of multi- 
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Fig. 8. Multimodal classification problem. 

plicative weights and the summer is 
called a dot-product unit (12). 

The training procedure of this ma- 
chine is similar to that of the thresh- 
old logic machine. A set of training 
patterns is presented one at a time. 
If a correct classification is made, the 
weights associated with the wrong dot- 
product unit are each changed to re- 
duce its sum output, and simulta- 
neously the weights associated with the 
desired (or right) dot-product unit are 
changed to increase its sum output. 
This procedure is repeated until all 
or almost all of the patterns in the 
training set are correctly identified 
by the "trained" networks. 

A linear machine with n dot-product 
units acting in parallel becomes an 
n-class categorized, with one network 
assigned to each of the n classes. 
There is no output coding problem; 
the class is determined by the summer 
with the greatest output. The simpli- 
fication and increased performance 
has, apparently, been achieved at the 
price of using many more networks. 
The same number of networks ar- 
ranged as threshold logic units, with 
ideal coding, would probably handle 
far more classes. It is an open ques- 
ltion whether such ideal codes exist. 

As with the threshold logic machine, 
if a solution exists (that is, if the 
problem is linearly separable) the er- 
ror-correction procedure will converge 
to a solution for the n-class linear ma- 
chine (13). 

Multimodal and Other Problems 

Figure 8 shows a representation of a 
problem containing two classes, with 
one class having two modes or clus- 
ters (14). This is a simple version of 
a multimodal problem. The surround- 
ing hulls roughly define 'the bound- 
aries of the clusters. A two-class prob- 
lem is shown in Fig. 9 where one 
class has a complex nonspherical dis- 
trilbution. In both these cases the two 
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classes cannot be separated by a single 
straight line. One could use curved 
lines or, as shown, several intersect- 
ing single lines, A 0 and BO. These 
lines would define the boundaries of 
several regions, each of which could be 
assigned to a given class. 

Problems with these properties can 
often be handled quite adequately by 
machine organizations that are variants 
of the threshold logic and linear ma- 
chines already described-for exam- 
ple, the Madaline (15) and Piecewise 
linear machines (8, 13). Figure 10 
shows a schematic drawing of a Piece- 
wise linear machine that is designed 
to handle two classes with two modes 
in each class. As in the linear ma- 
chine the basic networks are dot-prod- 
uct units, with one unit assigned to 
each known or suspected mode. In 
the diagram, two dot-product units 
are assigned to each class. When a pat- 
tern is presented to the input terminals 
common to all the dot-product units, 
it is recognized as belonging to the class 
represented by the dot-product unit with 
the largest output sum. The error-cor- 
rection training is essentially the same 
as for the linear machine, that is, as 
the training patterns are presented in 
sequence, no corrections are made if 
any one of the dot-product units as- 
sociated with the correct class has a 
maximum output. If the wrong dot- 
product unit has a maximum, then its 
weights are changed by equal amounts 
to reduce the total output sum. Simul- 
taneously one of the right dot-product 
units which has the largest output sum 
for that pattern (but not larger than 
that of the wrong dot-product unit) has 
each of its weights changed to increase 
its output sum. 

This organization and training pro- 
cedure does not always converge to a 
possible solution, but it often converges 
closely enough to be useful in many 
practical cases. A method guaranteed 
to converge is still being sought. 

Prototype and Cluster Seeking 

Other interesting methods for the de- 
sign of the categorized are being de- 
veloped. An important group of meth- 
ods stems from one of the first tech- 
niques used in pattern classification- 
that of template matching. This method 
consisted of storing all the known pat- 
terns, comparing the unknown pattern 
with each of the stored patterns ac- 
cording to some similarity measure, 
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and assigning the unknown to the class 
of that known pattern to which it is 
most similar. In terms of our geomet- 
ric representations, a useful similarity 
criterion could be the "nearness" be- 
tween the point representing the un- 
known pattern and each of the points 
representing all the known patterns. 
"Nearness" is usually measured by the 
Euclidean distance between points. In 
many problems the large number of 
distance computations makes this meth- 
od prohibitively expensive. Since pat- 
terns of different classes tend to aggre- 
gate together into distinguishable clus- 
ters of points, each cluster of points 
can be replaced by one or more proto- 
type points which are representative 
of the cluster. The distance between 
the unknown pattern point and each 
of the prototype points can be meas- 
ured, the unknown point can be as- 
signed to the class of the closest proto- 
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type. Since the number of classes (and 
therefore prototype points) is quite 
small compared to the necessary num- 
ber of training patterns, the computa- 
tion time which is saved is highly sig- 
nificant. 

Figure 11 shows an example of a 
simple classification problem where the 
two classes are separated and clus- 
tered in an orderly manner. In this 
case the prototype points are P1 and 
P2, the centers of gravity of the two 
clusters of known patterns. An un- 
known pattern XI with distances d, 
and d2, respectively, to prototype points 
P1 and P2 would be classified as belong- 
ing to P1- (class one) because d1 is 
smaller than d2. 

The situation is quite different when 
there are more than one cluster in one 
class, and the distribution of the pat- 
terns in this class is not known, that 
is, when one does not know which 
patterns belong to which of the clus- 
ters in that class. A case of this kind 
is shown in Fig. 12 where class one 
has two modes and it is not known 
beforehand which patterns (points) of 
class one are associated with each of 
the modes. If one chooses for the pro- 
totype of class one the center of gravity 
of all the points in class one, one 
would obtain the point P4, which 
might almost coincide with the proto- 
type P2, the center of gravity of class 
two points. Clearly P4, in this case, 
is more representative of class two 
than of class one, and performance 
on new patterns would not be satis- 
factory. One has to identify the two 
modes and the known patterns asso- 
ciated with each mode if the proto- 
type is to be represented adequately. 
Thus P1 and P3, the center of gravity 
prototypes for modes one and two of 
class one, would, together with P. of 
class two, make a good representation 
of the data. 

Serious problems arise in even sim- 
ple cases, such as shown in Fig. 13, 
where each class is unimodal but one 
or more of the clusters may not be 
very regular. In this case the center 
of gravity P1 of the elongated cluster 
of class one would poorly represent 
this class. A better representation 
would be obtained by using two proto- 
type points, P3 and P4. 

It is occasionally possible, by de- 
tailed analysis of the data, to deter- 
mine the distributions well enough to 
choose suitable prototype points. With 
multidimensional, multiclass problems 
this may be too difficult and expen- 
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sive. There are several cluster-seeking 
techniques available with adaptive or 
learning procedures which are effec- 
tive in finding suitable prototypes, for 
example, one for each regularly-shaped 
cluster or several for irregular clus- 
ters (5, 16, 17). Although more calcu- 
lations are performed to effect those 
methods than in the boundary-seeking 
methods, the results may justify the 
cost. A combination of cluster-seeking 
and boundary-seeking methods would 
probably be more effective than either; 
such combinations are being sought. 

Applications and Results 

-Some classification techniques based 
on adaptive or trainable structures 
are matching and in some cases ex- 
ceeding the performance of more con- 
ventional statistical methods. The prob- 
lem areas range from weather fore- 
casting, through medical diagnosis, in- 
to the more familiar area of recogni- 
tion of alphanumeric characters. Nils- 
son (2) provides many up-to-date ref- 
erences. Casey et al. (18) conducted 
a large-scale experiment with 6000 
typewritten alphanumeric characters 
of many fonts. They used an adap- 
tive technique and reported about 20 
errors, a performance better than oth- 
er methods tried on the same data. 
Brain and Munson (19) show results 
of less than 1 percent error in the 
classification of complex hand-printed 
graphical symbols. Both of these prob- 
lems are multimodal and multiclass, 
with poorly known distributions. Stark 
(20) has successfully attacked the 
problem of electrocardiograph inter- 
pretation with adaptive techniques. 
Gerdes (21) reports results on the 
recognition of man-made and other ob- 
jects displayed in aerial photographs, 
a problem area of particular difficulty 
in view of the overwhelming mass of 
irrelevant information which is usual- 
ly recorded and from which a relative- 
ly small selection must be made. 

In each of the successful experi- 
ments, much effort was expended in 
the selection and extraction of suit- 
able features in the data-filtering stage. 
There is no common thread running 
through either the type of features or 
the method by which they were se- 
lected. In the future more can be 
gained by improving the data filter than 
in finding more efficient ways to adap- 
tively "learn" to perform satisfactory 
categorization. 
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Pattern Recognition: The Future 

The problems remaining in the 
broader field of pattern recognition 
are formidable indeed. For example, 
the recognition by machines of hand- 
printed characters with performance 
equalling that of trained humans re- 
quires not only pattern classification, 
but the use of context. Because of 
considerable similarity of shape, some 
letters and numbers (6 and G, 5 and 
S. U and V, for example) are often 
confused. Some poorly formed char- 
acters have lost all or most distin- 
guishable features. Ambiguous or 
wrong classification decisions are high- 
ly probable unless contextual cues are 
used. Cues can be sought in the rela- 
tions between the character in ques- 
tion and its neighboring characters, 
the words in which it is embedded, sen- 
tences, and so forth, until, if neces- 
sary, the whole text is used in the 
search. Similar but far more difficult 
problems in this class are the recog- 
nition of hand-written script and the 
recognition of the words in flowing 
speech. With the aid of programmed 
tests based on known contextual rela- 
tions, the digital computer can be 
used to augment pattern-classification 
techniques. 

As with feature selection in data- 
filtering systems, there are no general 
methods available for the develop- 
ment or selection of good contextual 
relations and tests. As yet, the value 
of these relations can only be judged 
empirically. 

The visual recognition of three-di- 
mensional objects presents many new 
problems. Objects that are to be rec- 
ognized are usually embedded in an 
environment of many other distinguish- 
able objects and backgrounds. The 
separation or isolation of individual 
objects preparatory to classification be- 
comes a formidable task in its own 
right and may require considerable 
analysis based on such cues as color, 
three-dimensional measurements, and 
texture. If, in addition, one desires to 
recognize objects that are partially ob- 
scured by portions of other objects, a 
new hierarchy of tests may be neces- 
sary. It is -generally infeasible to in- 
crease the number of categories to 
include all possible combinations of 
overlapping objects. As in the context- 
related problems, it appears neces- 
,sary to discover, list, and test for 
relations between parts of objects, be- 
tween objects and 'objects, and be- 

=D-1~ ~ ' 0* 0 

UJ PI 00 0 CLASS I 
cA MODE II 

CLASS I 
U. MODE!I 

FEATURE x2 

Fig. 12. Classification by prototype in mul- 
timodal distributions. 

tween objects and the environment in 
the field of view of the sensing de- 
vice. In fact, the size of the field of 
view itself is an important variable, 
and areas of adjustable size should 
be sampled when a scene of interest 
is being scanned. 

Again, as with advanced character- 
recognition systems, the programmed 
digital computer is essential in augment- 
ing the categorization part of the rec- 
ognition problem. Among other func- 
tions the- computer program must pro- 
vide for the manipulation and selection 
of -the sensory data (19), and storage 
of relevant relations in a manner which 
simplifies search, retrieval, and logical 
questioning (22); the program must 
also provide instructions that govern 
the sequence of operations. 

Summary 

Man's intelligent behavior is due in 
part to his ability to select, classify, 
and abstract significant information 
reaching him from his environment by 
way of his senses. This function, pat- 
tern recognition, has become a major 
focus of research by scientists work- 
ing in the field of artificial intelli- 
gence. 

At the lowest level, pattern recog- 
nition reduces to pattern classification, 
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which consists of the separation, into 
desired classes, of groups of objects, 
sounds, odors, events, properties, and 
the like; the separations are based on 
sets of measurements made on the en- 
tities being classified. The pattern 
classifier is composed of a data filter 
and a categorizer. The data filter se- 
lects the distinguishing features and 
represents them as sets of real num- 
bers; each set is termed a pattern. The 
categorizer assigns each pattern to 
one of several desired classes. 

Patterns can be represented geomet- 
rically as points in an n-dimensional 
space; the n coordinates of each point 
are the numerical values of the fea- 
tures selected to represent the pattern. 
A pattern classification system sepa- 
rates an n-dimensional space into re- 
gions, each of which ideally contains 
points of only one class. One method 
to effect this separation is by means 
of "trainable" categorizers-major com- 
ponents of adaptive machines. They 
consist of networks whose internal 
parameters are varied according to a 
set of fixed rules during a training 
cycle. A statistically large sample of 
known patterns are presented, one at 
a time, to the networks; internal cor- 
rections are made each time a pattern 
is erroneously classified. Classifica- 
tion performance tends -to improve as 
the set of known patterns is cycled 
repetitively through the machine. Fi- 
nally, the adequacy of adaptation is 
tested by a separate set of similar 
patterns which have not been used in 
the training process. 
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A number of different machine 
organizations and training rules have 
been developed and are being applied 
successfully to numerous classification 
problems. More difficult recognition 
problems requiring the aid of logical 
tests and analysis, search and associa- 
tion, use the digital computer pro- 
grammed to supplement the functions 
of the adaptive classifier. 
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