
samples from St. Paul's Rocks, such as 
those on rare earth elements (32), and 
strontium isotopes (33), evidently were 
done on the spinel peridotite mylonites. 
Taken alone, neither the spinet pe- 
ridotite mylonites nor the brown horn- 
blende mylonites have compositions 
thought to be appropriate for the aver- 
age composition of the mantle. The 
former, as a whole, are much too low 
and the latter much too high in alkalies 
and probably in U and Th to be ap- 
propriate for parental basalt materials, 
or to be consistent with oceanic heat 
flow. The pargasite-enriched mylonite 
(18-900, Table 1) and the estimated 
average of the mylonites are both more 
in accord with suggested average 
mantle compositions. 

Clearly, additional analytical studies 
are needed to evaluate the idea that, 
as a whole, St. Paul's Rocks material 
is acceptable as compositionally repre- 
sentative of the mantle. We are con- 
tinuing our study of this interesting in- 
trusion, both on the suites of samples 
from the islets and on the extensive 
suites of samples obtained by dredging 
about the intrusion. 
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Diffusion of Water in Zeolites 

Abstract. The self-dif usion coefficient 
D of water occluded in samples of 
near-faujasite has been determined by 
pulsed field-gradient spin-echo nuclear 
magnetic resonance. The value of D in 
square centimeters per second X 
105 at 30'C is 1.34, 1.65, and 1.88 
in the following zeolites, respectively: 
Na X, Ca X, and Ca Y (X and Y 
being an indication of ratio of silicon 
to aluminum in the zeolites). By com- 
parison, the value of D in pure water 
at 30'C is 2.5 X 10-5 cm2/sec. 
Arrhenius activation energies for D 
are 6.9, 6.8, and 5.6 kilocalories per 
mole, respectively, for the three fauja- 
sites and 5.0 kcal/mole for pure wa- 
ter. Thus, there appears to be little 
difference in diffusion behavior between 
free water and water occluded in 
faujasite. 

How the properties of a liquid are 
modified in the vicinity of a solid is 
a subject that has often been dis- 
cussed. An interesting class of solids 
lending itself to an investigation of this 
question is that of the porous crystal- 
line aluminosilicates known as zeolites 
or molecular sieves. An interesting 
property of a liquid, related to its struc- 
ture, is diffusion. Since water normally 
fills the cages of a zeolite in equilibrium 
with the atmosphere, it seems natural 
to find that several studies have been 
devoted to self-diffusion of water in 
zeolites (1, 2). 

Generally, it was found that the self- 
diffusion coefficient D of water oc- 
cluded in these crystals was substantial- 
ly smaller than that of pure water. 
Thus, Barrer and Fender (2) report 
a value of D equal to 1.26 x 1O-7 
cm2/sec for water in chabazite at 
450C. This is more than 100 times 
less than the corresponding value for 
pure water. 

These low figures are easily explained 
by the hindrance to motion of water 
molecules as they diffuse through the 
very small channels of the zeolites un- 
der study. However, one structure exists 
that presents wider channels and larger 
cavities than are found in the crystals 
studied thus far (3). This is faujasite 
(or near-faujasite in the synthetic 
form), a structure resulting from the 
stacking of SiiO4 and A104 tetrahedra 
in a cubo-octahedron arrangement. 
Thus, cavities about 12 A in diameter 
are formed that contain about 30 wa- 
ter molecules when the zeolite is 
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Table 1. Self-diffusion coefficient of water, 
D X 10W cm2/sec. T, temperature. 

Faujasites Bulk water 

T Simpson 
(?C) Na Ca Ca This and 

X x y work Carr 
(10) 

0 1.04 
10 0.74 0.81 1.44 1.36 
20 1.00 1.85 
25 2.23 
30 1.34 1.65 1.88 2.46 
40 2.11 2,41 2.78 3.40 3.1-4 
60 4.10 4.61 5.47 5.47 4.82 
69 5.30 
70 5.78 

equilibrated with the atmosphere. Four 
windows about 8 A in diameter lead 
from each cavity to four similar adja- 
cent cavities. Charge-compensating cat- 
ions (for example, sodium) occupy 
various positions in the structure. 

Because of the presence of these 
large accessible cavities, faujasite has 
recently received a great deal of at- 
tention as an adsorbent and catalyst. 
It was decided to use this material in 
order to reexamine the possible effect 
of the solid on liquid structure and 
to measure self-diffusion of water in 
faujasite by means of pulsed gradient 
spin-echo nuclear magnetic resonance 
(NMR), as described by Stejskal and 
Tanner (4). This method, which evolved 
from the original one of Carr and Pur- 
cell (5), has many advantages of speed 
and simplicity that make it much more 
desirable than the conventional tech- 
niques previously used in such work. 

The apparatus we used has been 
described in detail (6). The basic spin- 
echo spectrometer was the model 
ELB - 15 constructed by Magnion Inc., 
Burlington, Massachusetts. Magnetic 
field gradients G were applied by wind- 
ing a pair of magnetically opposed 
coaxial coils on tapered forms with 
their axis parallel to the laboratory 
field. The coils were designed so as 
to produce as large a region of homo- 
geneous gradient as possible. They were 
calibrated with pure water by assuming 
a value for D equal to 2.51. X 10-5 
cm2 sec- 1 (7) and by determining G 
with the use of the expressions given 
by Abragan-m (8) which also relate 
D to the spin-echo amplitude data. 
The gradient switch. was activated by 
the pulse output of two Tektronix type 
1 63 pulse generators, which were ref- 
erenced to the transmitter pulse se- 
quence. Two near-faujasite samples 
were obtained from the Linde Coin- 
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pany. They were in the sodium form 
and designated as Na X and Na bY, 
the main difference between the two 
being in the Si:Al ratio (approximating 
I for X and 2 for Y). The Ca X and 
Ca Y samples were prepared from those 
by ion exchange. 

The self-diffusion coefficients of pure 
water and of water in the various 
zeolites are given in Table 1. Eight 
different gradients were used at each 
temperature, and the indicated value 
for D is an average of the eight values 
obtained. The data of Table 1 yield 
straight lines in plots of In D versus 
1/ T. Activation energies EJ corre- 
sponding to D = D* exp (-E1)/JRT) 
are 6.9, 6.8, 5.6, and 5.0 kcal/mole 
for water in Na X, Ca X, Ca Y, and 
bulk water, respectively. These minor 
differences in temperature coefficient 
are further compensated by correspond- 
ing minor variations in preexponential 
factors D, so that values of D for 
water in faujasite are only slightly 
lower (by less than a factor of 2 at 
low temperature) than the value of 
D in pure water. 

This then is the main result of our 
investigation: as revealed by very sini-i 
lar values of D, the motion of water 
molecules in faujasite resembles very 
much that of pure water. It appears 
that the cavities and windows in the 
structure are large enough.so that the 
influence of the crystal lattice becomes 
minor. It is important to note that the 
spin-echo NMR_ technique concerns it- 
self with motion of protons over large 
distances that cover many cages and 
windows. Indeed the duration of a, 
gradient pulse is of the order of 10"I 
second, and during this time a water 
molecule will have diffused over a dis- 
tance of the order of O.-4 cm. 

Barrer et ail. (9) have remarked that 
molecular sieves provide a macromo- 
lecular framework not unrelated to 
that found in many biological systems. 
If this is so, the results of this work 
may be of interest not only to those 
concerned with molecular sieves as 
adsorbents and catalysts. Finally, for 
studies of diffusion in these and other 
porous materials, the NMR method 
used here seems to have very wide 
applicability. 
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Crystallization of Human Lysozyme 

Abstract. Lysozyme, isolated from the 
urine of patients with monocytic leu- 
kemia, has been crystallized as the chlo- 
ride at pH 4.5 and at pH 10.5. The 
crystal forms of the human enzyme 
Show certain similarities as well as dis- 
tinct dissimilarities compared with the 
crystal forms of lysozyme chloride 
from hen's egg white. 

There are large quantities of iyso- 
zyme in the serum and urine (up to 
4 g per day) of patients with monocytic 
and monomyelocytic leukemia (1). The 
enzyme has been isolated from the 
urine of several patients; physico- 
chemical and immunochemical anal- 
yses indicate that it is a low-moleic- 
ular-weight ( 14,000) basic protein 
with an isoelectric point at about pH 
10.5. The lysozyme present in these 
serums and urines is apparently identi- 
cal to that of normal human tears, 
saliva, leukocytes, and serum; but it 
is structurally different from the lyso- 
zyme of hen's egg white (1). Whereas 
the human and egg-white lysozymes 
are of similar molecular size and 
basicity, they differ significantly in ami- 
no acid composition, tryptic peptide 
("fingerprint") patterns, antigenic struc- 
ture, and enzymatic activities. When 
assayed with heat-killed, Micrococcus 
lysodeikticus organisms, the activity of 
the human enzyme has been found to 
be 3 to 12 times greater than that of 
twice-crystallized egg-white enzyme. 
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