
period of 60 to 90 minutes was com- 
pared with that during a period of 
15 to 45 minutes. A dose of a-toxin 
(16,000 HU) that produced maximal 
suppression of SCC and PD was used. 
The addition of toxin prior to incuba- 
tion produced an increase in mean 
oxygen consumption in paired tissue 
from 4.5 to 6.5 ul per minute 
(P < .001) (Table 1). When toxin was 
added to bladder suspensions which 
had been allowed to respire for 45 
minutes, oxygen consumption observed 
at 60 to 90 minutes was increased by 
1 5.4 s1l over that observed at 15 to 
45 minutes. Oxygen consumption by 
untreated tissue declined by 4.6 ,ul 
during the same interval (P < .001). 

The inhibition of both the short- 
circuit current and potential difference 
of the isolated toad bladder by staphylo- 
coccal a-toxin suggests that an altera- 
tion in epithelial ion movement has 
occurred. This does not appear to be 
secondary to inhibition of oxygen con- 
sumption since this was stimulated 
by the toxin. Active sodium transport 
has been shown to be directly related 
to SCC across the isolated bladder in 
a variety of circumstances (6). Whether 
the inhibition of SCC and PD by this 
toxin reflects a specific effect on active 
transport mechanisms, a destructive ac- 
tion on cell membranes, or is mediated 
by other metabolic or structural changes 
remains to be determined. 
JAMES J. RAHAL, JR., MARTIN E. PLAUT 
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Mammalian X-Chromosomes: 
Change in Patterns of DNA 
Replication during Embryogenesis 

Abstract. One arm of both X-chromo- 
somes in female eight-cell embryos of 
the golden hamster replicates late in 
the period of DNA synthesis. Mid- 
gestation embryos and adult fibro- 
blasts show an increase in late-repli- 
cating DNA. Here, one X-chromosome 
is labeled in one arm; the other is 
labeled throughout. 

In somatic cells of female mammnnals, 
one of the two X-chromosomes has the 
following characteristics: it is relative- 
ly inactive, both genetically and meta- 
bolically (1); it shows positive heter- 
opycnosis (2); and its DNA is synthe- 
sized later in the DNA-synthetic or S 
period than is most of the other chro- 
mosomal DNA (3). According to the 
Lyon hypothesis (4), this differentiation 
is a random event involving either 
X-chromosome during early embryo- 
genesis. However, once a given chro- 
mosome has been inactivated it will re- 
main so in all subsequent cell genera- 
tions. 

Interphase and prophase heter- 
opycnosis of the X-chromosome does 
not appear until the time of implanta- 
tion (5). Likewise, estimates of the 
time of inactivation from genetic stud- 
ies do not implicate the first few cell 
divisions (6). Therefore, if the previ- 
ously mentioned relationships hold, the 
patterns of DNA replication in the X- 
chromosomes during the early stages 
of cleavage should differ from those 
found after implantation. 

In this report, comparisons are made 
of autoradiographs of metaphase cells 
from 3-day-old, eight-cell embryos 
before implantation, and 71/2- to 91/2- 

day-old embryos after implantation, and 
of fibroblasts from adult skin. All cells 
have been continuously exposed to tri- 
tiated thymidine during the latter part of 
the period of DNA-synthesis, a time 
when few chromosome segments be- 
come labeled. The golden or Syrian 
hamster (Mesocricetus auratus) was 
chosen for this study because it can be 
easily hand-bred, it produces litters of 
9 to 13 young, and its early develop- 
mental patterns are known (7). Even 
with these advantages, over 300 females 
have been sacrificed in the course of 
this study. 

The eight-cell embryos were flushed 
from the uterine horns of pregnant 
females and placed in a medium, used 
by Brinster (8), containing 8 sue of tri- 

tiated thymidine per milliliter, (New 
England Nuclear Corporation; specif- 
ic activity > 10.6 c/mmole) for 7 to 
81/2 hours. Colchicine (0.2 mg/ml) 
was added for the last hour. Mid-gesta- 
tion embryos and adult fibroblasts were 
cultured in enriched Eagle's medium 
containing 15 percent human and 5 per- 
cent calf serum and 2 tkc of tritiated 
thymidine per milliliter for 51/2 to 61/4 

and 6 hours, respectively. Collchicine 
was present during the last 1/2 hour in 
the embryo cultures and during the last 
4 hours in the fibroblast cultures. All 
cells were treated with hypotonic ci- 
trate, fixed, and squashed in 1.5 per- 
cent aceto-orcein either by direct pres- 
sure or by heating the slide; autoradi- 
ographs were then made (9). 

The X-chromosome is the largest of 
the golden-hamster complement: it is 
nearly metacentric and is morphologi- 
cally distinguishable (10). The patterns 
of DNA replication of the sex chro- 
mosomes have been described for cul- 
tures of 15-day fetal cells and for 
adult cells (11). These published re- 
ports are confirmed by our findings 
in 35 cells from adult skin fibroblasts 
from females, which have been labeled 
during the latter part of the S period. 
Here, one of the X-chromosomes is 
labeled along its whole length, the other 
being labeled in only one arm. Cre- 
dence is given to this by the finding 
of one and a half heteropycnotic X- 
chromosomes in prophase cells (12) 
and one and one-half X-chromosomes 
in metaphase cells showing an altera- 
tion in morphology after special fixa- 
tion and spreading (13). Our examina- 
tion of 29 cells from 71/2-day-old and of 
29 cells from 9/2-day-old female em- 
bryos showed that the replication pat- 
tern just described is clearly established 
by these times in development. 

The patterns of replication in X- 
chromosomes reported for the Syrian 
hamster differ in some respects from 
those found in most mammalian spe- 
cies (3, 14). Usually, pronounced asyn- 
chrony is found in the times at which 
the two X-chromosomes replicate; one 
chromosome is labeled at the end of 
the S period, the other at an earlier 
time. As in other mammals, asynchro- 
nouis replication of X-chromosome DNA 
is present in the Syrian hamster, but 
only in one arm. The other arm of 
both X-chromosomes is late replicat- 
ing. The presence of this late-replicat- 
ing DNA in both chromosomes may 
be related to their larger size (12), 
since other mammals with large X- 
chromosomes show replication pat- 
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terns with this characteristic (15). 
We have found that the patterns of 

DNA replication in the X-chromo- 
somes of female eight-cell embryos are 
different from those of embryos after 
implantation and from adult fibroblasts. 
In the cleavage embryos both X-chro- 
mosomes are labeled in only one arm 
(Fig. 1). This is thought to represent 
a true difference in the time of repli- 
cation for several reasons: (i) Of 34 
cells labeled relatively late in the 
period of DNA synthesis, no case was 
found in which one and a half X- 
chromosomes were labeled. The X- 
chromosomes were never labeled in 
more than one arm each. (ii) We tried 
to compare cells which contained sim- 
ilar amounts of label on the autosomes. 
In the implanted embryos and fibro- 
blasts, cells with relatively little label 
showed the autosomes to have the 
grains mainly concentrated in their 
short arms (11). Autosomes from eight- 
cell embryos tended to be slightly more 
diffusely labeled but retained many of 
the similarities just noted. Even though 
the autosomes were more diffusely la- 
beled in the cleavage embryos, the X- 
chromosomes contained less label. 
(iii) An additional ten cells were ex- 
amined in which many autosomes were 
diffusely labeled. In these, both X- 

chromosomes were labeled throughout 
their length. This increase in labeling 
of the X-chromosomes does not occur 
until the autosomes have become dif- 
fusely labeled, a period which is not 
representative of the end of the S 
period. Since we have observed cells 
from a stage when there is little label- 
ing to one where many chromosomes 
are completely labeled without finding 
the intermediate labeling pattern of 
one and a half X-chromosomes, it is 
unlikely that our results are spurious. 

It is reasonable to assume, then, that 
the X-chromosomes in the embryos be- 
fore implantation differ from those af- 
ter implantation. Our findings indicate 
the basic pattern of replication in eight- 
cell female embryos to be the late rep- 
lication of one arm in both X-chro- 
mosomes. Between cleavage and mid- 
gestation one of the other arms of an 
X-chromosome shifts from an early to 
a later time of replication, resulting 
in the late replication of one and a 
half X-chromosomes. Presumably this 
change in DNA replication is a mani- 
festation of the genetic inactivation of 
that chromosome segment. 

In the male, the single X-chromo- 
some is labeled in not more than one 
arm at the end of the S period (11). 
We have made similar observations in 
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Fig. 1. Metaphase chromosomes from a cell of a female Syrian hamster, eight-cell 
embryo labeled at the end of the S period. (a) Diploid metaphase spread (2n = 44). 
Arrows mark the two X-chromosomes. (b) X-chromosomes from this cell photographed 
before and after autoradiography. 
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12, 26, and 15 cells from cleavage em- 
bryos, implanted embryos, and adult 
fibroblasts, respectively. The Y-chro- 
mosome is not morphologically dis- 
tinct (10). Nevertheless, in adult fibro- 
blasts, as well as in cells from mid- 
gestation embryos, a single completely 
labeled chromosome is found when all 
others, except the X-chromosome, are 
relatively unlabeled. This unpaired chro- 
mosome is inferred to be the Y-chro- 
mosome. In observations of eight-cell 
embryos, the typically labeled Y-chro- 
mosome has not been detected. 

We conclude that there is X-chromo- 
some differentiation during mammalian 
embryogenesis, as predicted by the Lyon 
hypothesis. This involves an increase 
in the amount of late-replicating DNA 
in one of the two X-chromosomes of 
females. Once established, these pat- 
terns of replication are apparently 
maintained in the later stages of em- 
bryogenesis and in the various adult 
somatic tissues (11, 16). 

RICHARD N. HILL 
Genetics Department, University 
of Minnesota, Minneapolis 55455 
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