Stibnite (Sb₂S₃) Solubility in Sodium Sulfide Solutions

Abstract. The solubility of stibuite (Sb_2S_3) was measured at 25°C and 1 atmosphere in solutions ranging from 0.45 to 7.16 percent Na_2S by weight. Sb_2S_3 : Na_2S mole ratios of saturated solutions range from 0.238 to 0.403. Stibuite solubility increases at an increasing rate with rising Na_2S concentration. The reaction that best fits the experimental data is $2Sb_2S_3 + HS^- + OH^- = Sb_4S_7^{2-} + H_2O$, for which an equilibrium constant was estimated to be about 5.0.

Interest by geologists has long been centered on the nature of solutions capable of transporting the components of sulfide-ore minerals. Sulfide ion forms soluble complexes with some substances, such as HgS, Sb_2S_3 , and As_2S_3 . For this reason, alkaline aqueous sulfide solutions have been postulated to be a possible ore-forming solution implicated in the formation of some epithermal deposits of cinnabar (HgS), stibnite (Sb_2S_3), and orpiment (As_2S_3).

With regard to the origin of epithermal ore deposits, we have determined at 25° C the saturation curve of stibnite (Sb₂S₃) in Na₂S-H₂O solutions ranging in concentration from 0.45 to 7.16 percent Na₂S by weight. Fiala and Konopik (1) demonstrated that the solubility of stibnite at 20°C increased markedly with increasing Na₂S concentration; however, in addition to stibnite they encountered some solid phases that we did not find.

Artificial stibnite was prepared by heating to 800°C finely ground antimony and sulfur in evacuated silicaglass tubes and allowing the mixture to cool slowly for 24 hours. The interplanar spacings of the resultant solid phase were identical with the spacings of natural stibnite, and microscopic examination revealed homogeneous stibnite only.

Clear, colorless $Na_2S \cdot 9H_2O$ and boiled distilled H_2O were used to make up the Na_2S solutions. Stibnite and Na_2S solutions were agitated in rotating Teflon bottles at 25.00°C for periods ranging from 3 weeks to longer than 2 months. The Sb_2S_3 and Na_2S contents of solutions after 3 weeks did not differ significantly from the contents of solutions allowed to react for 2 months.

The saturated solutions were filtered through a fritted-glass crucible and were divided into two portions; one for the antimony analysis and the other for the total-sulfur analysis. Antimony was determined electrolytically by a modification of Treadwell and Hall's procedure (2). Total sulfur was determined by oxidizing the sulfur of dissolved Sb_2S_3 and Na_2S to sulfate and precipitating the sulfate as barium sulfate (3). The percentage of Na_2S was calculated from the determined concentrations of Sb_2S_3 and total sulfur. Water percentage was obtained by difference. Table 1 presents these and other data.

Figure 1 shows the 25° C saturation curve of stibnite. The convexity of the saturation curve toward the unsaturated solution field indicates that the ratio of dissolved Sb₂S₃ to total Na₂S increases with increasing concentration of Na₂S; dilution of saturated solutions would therefore cause supersaturation.

Fig. 1. Saturation curve of stibnite (Sb_2S_3) in a portion of the system Sb_2S_3 -Na₂S-H₂O at 25° ± 0.02 °C. Points represent the compositions of the analyzed saturated solutions.

The reaction between Sb_2S_3 and Na_2S solution is usually written (4)

$$Sb_2S_3 + 3 Na_2S = 2 Na_3SbS_3$$
 (1)

which suggests the possibility that a complex anion with the general formula $Sb_nS_{3n}^{3n-}$ exists in solution. If such a complex predominated, the saturated solutions should show no more than a 1:3 mole ratio of Sb_2S_3 to Na_2S , and the closest approach to the 1:3 ratio would be expected in the most concentrated solutions. The mole ratios of the saturated solutions (Table 1) range from 0.238 for the most dilute Na_2S solutions to 0.403 for the most concentrated. The reaction of stibnite and solution cannot be wholly as in Eq. 1.

The ratio of Sb_2S_3 to Na_2S of the complex anion may correspond to the composition of one or more of the known solid compounds of Sb_2S_3 and Na_2S ; they are: $Sb_2S_3 \cdot 3Na_2S$, $Sb_2S_3 \cdot$ $2Na_2S$, $2Sb_2S_3 \cdot 3Na_2S$, $Sb_2S_3 \cdot Na_2S$, and $2Sb_2S_3 \cdot Na_2S$. Reaction between stibnite and sulfide ion can be written

$$m \operatorname{Sb}_2 S_3 + n \operatorname{S}^{2-} = (\operatorname{Sb}_2 S_3)_m (S)_n^{2n-2}$$

If one complex predominates in the solution, the equilibrium constant for the reaction is

$$K = [(Sb_2S_3)_m(S)_n^{2n-}]/[S^{2-}]^n$$

in which expression formulas in brackets indicate activities. The solubility of stibnite would therefore be a function of the sulfide-ion concentration. However, the sulfide-ion concentration is low in Na₂S-H₂O solutions because of the extensive hydrolysis reactions S²⁻ + H₂O = HS⁻ + OH⁻, and HS⁻ + H₂O = H₂S + OH⁻. The hydrolysis of sulfide becomes relatively less with

Table 1. Solutions saturated with stibuite (Sb_2S_3) at $25^\circ\pm0.02^\circ C$ and 1 atm : compositions, mole ratios, and calculated constants.

Composition						
Percentage by weight			Mole per kilogram		Sb_2S_3 : Na_2S	K
Na_2S	Sb_2S_3	H_2O	Na_2S	Sb_2S_3		
0.45	0.47	99.08	0.058	0.0138	0.238	7.7
.73	.85	98.42	.094	.0250	.266	6.4
1.21	1.45	97.34	.155	.0426	.275	3.4
0.88	2.32	95.80	.241	.0683	.283	3.1
1.95	2.42	95.63	.250	.0712	.285	3.0
2.46	3.67	93.87	.315	.1080	.343	5.5
3.62	5.66	90.72	.464	.1667	.360	4.9
3.87	6.00	90.13	.496	.1766	.356	4.4
4.91	7.90	87.19	.629	.2325	.371	4.4
5.25	8.75	86.00	.672	.2576	.383	5.3
5.68	9.11	85.21	.728	.2682	.368	3.6
6.48	11.16	82.36	.830	.3285	.397	5.5
7.16	12.55	80.29	.917	.3694	.403	5.8

30 SEPTEMBER 1966

increase in Na₂S concentration, and the sulfide-ion concentration increases as a consequence. The ratio $Sb_2S_3:Na_2S$ in the saturated solutions should increase with increasing Na₂S if the hydrolysis reaction plays a significant role. The ratio does increase with increasing Na₂S concentration (Table 1). However, even in the most concentrated Na₂S solution, 0.917 mole/kg, hydrolysis is strong, and 0.4 is probably considerably less than the true value of m:n.

The strong hydrolysis of sulfide ion in water solution largely converts the sulfide ion to HS-. Hydroxide ions are produced in quantity equivalent to HS⁻. A reaction between stibnite and Na₂S solutions can therefore be written

$$m\underline{\text{Sb}_2\text{S}_3} + n \text{ HS}^- + n \text{ OH}^- =$$

 $(\text{Sb}_2\text{S}_3)_m(\text{S})_n^{2-} + n \text{ H}_2\text{O},$

and the equilibrium constant is

$K = [(Sb_2S_3)_m(S)_n^{2-})]/[(HS^{-})^n(OH^{-})^n]$

If the S^{2-} concentration is small enough to be neglected, values for Kmay be calculated from the experimental data for various assumed reactions by making the approximation that concentrations can be substituted for activities. Of the reactions considered, only calculations based on

$$2Sb_2S_3 + HS^- + OH^- = Sb_4S_7^{2-} + H_2O$$

yielded reasonably constant values for K. The calculations were made as follows: If A is total Na_2S in moles per kilogram and B is total Sb_2S_2 in moles per kilogram, $A - 2B = (HS^{-}) =$ (OH^{-}) . The K for the reaction can be written

$$K = B/2/(A - 2B)^2$$

The values of K calculated in this way (Table 1) range from 3.0 to 7.7, with a mean of 5.0; no particular trend of the value of K with increase in concentration of Na₂S was noted.

The following reaction is therefore tentatively proposed as being compatible with the data:

$$2Sb_2S_3 + S^{2-} = Sb_4S_7^{2-}$$

Adding to the plausibility of the postulated reaction is the existence of a solid compound having formula 2Sb₂S₃·Na₂S, in which the mole ratio $Sb_2S_3:Na_2S$ is 2:1.

> R. H. ARNTSON F. W. DICKSON

Department of Geological Sciences, University of California, Riverside

1674

References and Notes

- 1. R. Fiala and N. Konopik, Monatsh. Chem. 81, 504 (1950).
- 504 (1950).
 F. P. Treadwell and W. T. Hall, Analytical Chemistry (Wiley, New York, Engl. ed. 9, 1947), vol. 2.
 R. H. Arntson, thesis, Univ. of California,
- K. M. Hanson, thesis, only, of Cantorna, Los Angeles, 1958.
 C. A. Jacobson, Encyclopedia of Chemical Re-
- actions (Reinhold, New York, 1946), vol. 1, p. 257.
- 5. Supported by grant G7405 from the National cience Foundation Institute of Geophysics and Planetary Physics, University of California, publication 221.

15 August 1966

Retrograde Melting in the System Mg-Fe-Si-O

With regard to possible retrograde melting in the system Mg-Fe-Si-O (1), two comments are in order.

First, the lines (1, figs. 1 and 2) representing equilibrium conditions for the assemblages ol+py+I+liq and py+sil+ I+liq must both have positive slopes steeper than that of the line for ol+ sil+I+liq and flatter than that for ol+py+sil+I. This is seen from the chemographic relations of the phases in the projected compositional triangle Fe-Mg-Si (projected from the O corner of the tetrahedron Fe-Mg-Si-O) by the methods elaborated by Schreinemakers (2).

When the figures are thus corrected, it becomes evident that the possibilities for "retrograde melting" are in fact significantly greater than recognized by Speidel and Nafziger. Pyroxene-ironsilica assemblages cooled at constant or increasing $f_{0,2}$ from temperatures above 1305°C and oxygen fugacities above $10^{-11.3}$ atm (or lower, if f_{0_2} increases on cooling) will react to form melt on crossing the line py+sil+I+ liq, as will pyroxene-olivine-iron assemblages in the same $T-f_{O_2}$ region on cooling across the line ol+py+I+liq.

Second, the so-called "heat" of reaction derived by Speidel and Nafziger from the slope of the line for ol+sil+ I+liq is in fact only an intermediate result in what could be a calculation of the standard heat of the reaction

 $2\text{Fe} + \text{O}_2 + \text{SiO}_2 = \text{Fe}_2\text{SiO}_4$

if the activity coefficients of Fe₂SiO₄ in olivine and melt were accurately known as a function of temperature and composition. In the absence of such knowledge, slopes of lines on diagrams of log f plotted against 1/T cannot be interpreted in terms of physical heat. In any event, comparison with Darken and Gurry's (2) value for the standard enthalpy of formation of wustite (not the enthalpy of oxidation of metallic iron to the divalent ion, as stated) provides at best only a crude qualitative indication of the energy balance in the process under consideration.

An additional comment relates to the use of the term "retrograde melting" to describe a reaction between a gas and one or more solids to produce a liquid different in composition from either. The reaction considered here is entirely analogous to what takes place on cooling a system consisting of NaCl crystals and steam at 1 atm from 200°C to a temperature below 100°C; if there is enough H_2O , the salt crystals disappear and a liquid appears; but one would not normally call the process "retrograde melting."

P. TOULMIN, **1**II U.S. Geological Survey, Washington, D. C.

References and Notes

(1946). 3. Publication approval by the director, U.S.

Geological Survey.

27 June 1966

Toulmin's first comment to our report is correct if the four-phase assemblages considered could be projected onto the Mg-Fe-Si plane. However, vapor is present in equilibrium with all the phase assemblages presented (1, figs. 1 and 2). Oxygen must also be considered and Schreinemakers' relations for quaternary (2) rather than ternary systems (2, p. 531) must be used. The relations (1, figs. 1 and 2) are therefore correct and have been verified experimentally (3). The vaporabsent curve lies between (ol+py+sil+ liq) and the metastable extension of py+sil+I+liq. Toulmin's comments on the heat of reaction are well taken. All we intended was a qualitative indication of energy relations.

D. H. SPEIDEL

R. H. NAFZIGER

Department of Geochemistry and Mineralogy, Pennsylvania State University, University Park

References

- D. H. Speidel and R. H. Nafziger, Science 152, 1367 (1966).
 F. A. H. Schreinemakers, Koninkl. Akad. Ned. Wetenschap. Proc. 18, 820 (1915-16).
 R. H. Nafziger, thesis, Pennsylvania State University, 1966.

23 August 1966

SCIENCE, VOL. 153

G. TUNELL

F. A. H. Schreinemakers, Koninkl. Ned. Akad. Wetenschap. Proc. (Engl. ed.), 18-28 (1915– 1925); see also P. Niggli, Rocks and Mineral Deposits (Freeman, New York, 1954).
 L. S. Darken and R. W. Gurry, J. Amer. Chem. Soc. 67, 1398 (1945); ibid. 68, 798 (1946)