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02 analysis that is not found in the 
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/12o, which we consider to be somewhat 
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nitrate concentration indicates that it is 
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Dainton et al. (8), working with the 
identical system, also find stoichiometry, 
but their individual G values differ con- 
siderably from Hochanadel's. Seddon 
and Sutton (9) find stoichiometry in the 
NO system, but their evaluation is gOH 
- 2.9, as is Fielden's (10) in the 
MnO -: HCO.,- system; this value of 
gOH coincides with the sum of our 
gOH + g 0, (in equivalents). 

Thus the situation concerning the pri- 
mary species in neutral solutions must 
still be regarded as unsettled. It may 
well be true that 0 atoms may be mea- 
sured in most systems as the stoichio- 
metric equivalent in OH radicals; or 
they may appear as 0.,-which may not 
be expected. The scavenger systems 
used to determine primary species must 
be carefully evaluated for specificity. 
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G(02) = G(O2)Tf242) + G(O0)xo3-fxo3- 

where f/n20 and f, - are the fractions of 

energy deposited in the water and ni- 
trate ion, respectively, and G(O,)1o20 
and G (0) xo3- represent the oxygen 
yields from water and nitrate. Figure 
1 A shows that the data fit this linear 
funtion well, and we obtain a value 
G( 02),0 = 0.1 from the intercept at 

infinitely dilute solution, which, within 
the limits of experimental error, is the 
amount needed to remove the material- 
balance deficit. 

The unusual nature of this conclusion 
-that oxygen is produced. from water 
in the radiolysis of dilute nitrate solu- 
tions-requires that other interpreta- 
tions of these data be considered. Thus 
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Phosphorylase Kinase of the Liver: Deficiency 
in a Girl with Increased Hepatic Glycogen 

Abstract. Studies of a child with glycogenosis revealed an increased concentra- 
tion of glycogen and low phosphorylase activity in her liver. Using mixtures of 
homogenates of the patient's liver and of normal liver, we found the low phos- 
phorylase activity to be caused by a deficiency of phosphorylase kinase and not 
of hepatic phosphorylase. The fact that phosphorylase activity was restored to 
normal values by the addition of phosphorylase b kinase from rabbit muscle 
substantiates this conclusion. 
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Since Hers (1) reported studies of 
two patients with low activities of 
hepatic phosphorylase and elevated con- 
centrations of glycogen in the liver, a 
decrease in the activity of phosphoryl- 
ase has come to be equated with a 

Since Hers (1) reported studies of 
two patients with low activities of 
hepatic phosphorylase and elevated con- 
centrations of glycogen in the liver, a 
decrease in the activity of phosphoryl- 
ase has come to be equated with a 

deficiency in hepatic phosphorylase 
(Type VI glycogenosis) (2). Such an 
interpretation does not take into ac- 
count the complexity of the phospho- 
rylase system (Fig. 1) which com- 
prises at least three other enzymes (3). 
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GLUCOSE-I-PO4+GLYCOGEN 

Fig. 1. Hepatic phosphorylase system. 

Deficiencies other than that of phos- 
phorylase can be postulated which, 
nevertheless, would result in a low 
phosphorylase activity. 

A 4-year-old girl with marked 
hepatomegaly since birth was studied. 
The edge of her liver was 13 cm be- 
low the costal margin in the mid- 
clavicular line. Physical examination re- 
vealed no other abnormality. During 
the period of 1 year, the patient's 
liver was biopsied six times with a 
Menghini needle (4). Between 7.7 and 
12.1 percent of the six biopsy speci- 
mens was glycogen (in normal liver up 
to 6.5 percent of wet tissue weight 
is glycogen), and the activity of phos- 
phorylase varied between 0 and 6.0 
umole of phosphate per gram per 
minute. In liver tissue of 48 normal 
individuals, phosphorylase activity 
ranged from 19.5 to 46.9 ~/mole of 
phosphate per gram per minute with 
an average of 27.4 (5). Histologically, 
the patient's muscle tissue was nor- 
mal, as were the glycogen content of 
the muscle and its phosphorylase ac- 
tivity as judged by biochemical anal- 
ysis. Similarly, the activities of dex- 
trin-1,6-glucosidase (amylo-1,6-glucosid- 
ase) and lysosomal acid a-1,4-glucan 
glucohydrolase (a-1,4-glucosidase) in 
muscle and in liver, and the activity 
of glucose-6-phosphatase in liver were 
normal (6). 

The liver tissue was homogenized 
with a glass hand-homogenizer. Im- 
mediately after biopsy and before the 
beginning of the first period of incu- 
bation, the initial phosphorylase activ- 
ity was determined in a portion of the 
homogenate which had been prepared 
in ice-cold tris(hydroxymethyl)amino- 
methane (Tris) and sodium 8-glycero- 
phosphate buffer. After the first period 
of incubation of 15 to 20 minutes, 
the following were added to all tubes: 
adenosine triphosphate (ATP), adeno- 
sine-3',5'-phosphate (3'5'-AMP), mag- 
nesium chloride, and sodium fluoride, 
the latter to inhibit phosphorylase phos- 
phatase. The details of concentration 
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are listed in Fig. 2, in which the time 
of these additions is marked 0. In this 
report the additions will be referred 
to as zero-time additions. 

A homogenate of normal human 
liver was incubated at 37?C. The phos- 
phorylase activity at the beginning of 
the incubation and immediately after 
the biopsy was 25.5 /tmole of phos- 
phate per gram per minute or 13.6 
,umole of phosphate per millimole of 
nitrogen in liver tissue per minute. Dur- 
ing the first incubation period of 15 
to 20 minutes, the phosphorylase was 
readily deactivated. The deactivation 
could be reversed by the zero-time 
additions. The phosphorylase activity 
increased within 10 to 20 minutes to 
a value of 22.4 ,umole of phosphate 
per millimole of nitrogen per minute. 

This normal pattern of response dif- 
fered from the results obtained in two 
separate attempts at activation of the 
patient's liver homogenate in vitro un- 
der the same conditions. The two experi- 
ments provided comparable sets of data, 
one of which is illustrated in Fig. 
2. Phosphorylase activity in the pa- 
tient's liver immediately after biopsy 
was 5.2 t/mole of phosphate per gram 
per minute or 3.9 ,mole of phos- 
phate per millimole of nitrogen per 
minute. This activity was lost during 
the 15 minutes of the first period of 
incubation. After the zero-time addi- 
tions, activation of phosphorylase was 
obtained at 10 percent of the rate 
which occurred in the control homog- 
enate. 

In the same experiment, at time 0, 
deactivated homogenate from the pa- 
tient was combined with deactivated 
homogenate from the control. After 
the zero-time additions, the combined 
homogenate was similarly incubated. 
Phosphorylase activity increased rapid- 
ly to a value of 21 ,umole of phos- 
phate per millimole of nitrogen per 
minute. This amount of activation is 
similar to that of the control homog- 
enate. 

Phosphorylase b kinase from rabbit 
muscle was used in a fourth reaction 
mixture included in the same experi- 
mental run. The phosphorylase kinase 
was prepared according to a standard 
procedure (7) and was used in a di- 
lution such that the phosphorylase im- 
purities of the preparation did not con- 
tribute any activity to the final phos- 
phorylase assay of the experiment. 
When muscle phosphorylase kinase 
was added to a reaction mixture the 
same as that contained in the deacti- 

-15 0 10 20 30 40 50 60 70 80 
Time in minutes 

Fig. 2. Reactivation of liver phosphorylase 
in vitro. The homogenates contained 80 
mg of tissue per milliliter in 4 X 10-2M 
Tris-sodium p-glycerophosphate buffer, 
pH 7.8, for the first incubation period of 
15 minutes at 37?C. At time 0, additions 
were made to give these final concentra- 
tions: 10-3M ATP; 10-?M 3'5'-AMP; 
5 X 10-2 M NaF; 5 X 10-'M MgCL2; 
2 X 1 0-2M Tris-sodium j3-glycerophos- 
phate buffer, pH 7.8; 20 mg of liver tissue 
per milliliter except for the tube "patient 
plus control" which contained 40 mg of 
liver tissue per milliliter. Control, O; 
patient's liver, A; patient's liver plus con- 
trol, *; patient's liver plus phosphorylase 
b kinase from rabbit muscle, X. 

vated homogenate of the patient's liver 
with the usual zero-time additions, rap- 
id activation of the patient's liver phos- 
phorylase occurred resulting in a final 
activity of 25 umole of phosphate per 
millimole of nitrogen per minute. This 
amount of activation is similar to that 
of the control homogenate and of the 
combined homogenate. 

A reduction of phosphorylase kinase 
activity in the patient's liver by 90 per- 
cent or more would account for these 
results. 
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