
highly developed instance of this. The 
associated changes in cardiac function 
and peripheral circulation are among 
the most profound ever demonstrated 

by naturally occurring stimuli. Their 
study aids in defining the range of 
physiological responses. Quantitative 
description of such responses is a neces- 
sary step toward the goal of under- 
standing the nature of general cardio- 
vascular control mechanisms and their 
integration with other physiological 
systems. 
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The relativistic quantum theory of 
fields was born some thirty-five years 
ago through the paternal efforts of 
Dirac, Heisenberg, Pauli and others. It 
was a somewhat retarded youngster, 
however, and first reached adolescence 
seventeen years later, an event which 
we are gathered here to celebrate. But 
it is the subsequent development and 
more mature phase of the subject that 
I wish to discuss briefly today. 

I shall begin by describing to you the 
logical foundations of relativistic quan- 
tum field theory. No dry recital of 
lifeless "axioms" is intended but, rather, 
an outline of its organic growth and 
development as the synthesis of quan- 
tum mechanics with relativity. Indeed, 
relativistic quantum mechanics-the 
union of the complementarity principle 
of Bohr with the relativity principle of 
Einstein-is quantum field theory. I 
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beg your indulgence for the mode of 
expression I must often use. Mathe- 
matics is the natural language of 
theoretical physics. It is the irreplace- 
able instrument for the penetration of 
realms of physical phenomena far be- 
yond the ordinary experience upon 
which conventional language is based. 

Improvements in the formal presenta- 
tion of quantum mechanical principles, 
utilizing the concept of action, have 
been interesting by-products of work 
in quantum field theory. Both my ef- 
forts in this direction (1) and those of 
Feynman (2) (which began earlier) 
were based on a study of Dirac con- 
cerning the correspondence between the 
quantum transformation function and 
the classical action. We followed quite 
different paths, however, and two dis- 
tinct formulations of quantum mech- 
anics emerged which can be distin- 
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anics emerged which can be distin- 

guished as differential and integral 
viewpoints. 

In order to suggest the conceptual 
advantages of these formulations, I shall 
indicate how the differential version 
transcends the correspondence principle 
and incorporates, on the same footing, 
two different kinds of quantum dyna- 
mical variable. It is just these two types 
that are demanded empirically by the 
two known varieties of particle statis- 
tics. The familiar properties of the 
variables qk, Pk, k = 1 . . n, of the 
conventional quantum system enable 
one to derive the form of the quantum 
action principle. It is a differential state- 
ment about time transformation func- 
tions, 

6<t1lt2> (i/ti) ti a [jdtL] t2 (1) 

t2s 

which is valid for a certain class of 
kinematical and dynamical variations. 
The quantum Lagrangian operator of 
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this system can be given the very sym- 
metrical form 

N 

L (/ dqk dpk dqk dpk \ 
4 dt 

- 
-dt q+ dt dtk- 

K-1 
- H(q, p, t) (2) 

The symmetry is emphasized by col- 

lecting all the variables into the 2n- 

component Hermitian vector z(t) and 

writing 

L za d az - H(z, t) (3) 

where a is a real antisymmetrical 
matrix, which only connects the com- 

plementary pairs of variables. 
The transformation function depends 

explicitly upon the choice of terminal 
states and implicitly upon the dynamical 
nature of the system. If the latter is 
held fixed, any alteration of the trans- 
formation function must refer to 

changes in the states, as given by 

<l -= (i/t)<htl[G, 5i2>= - (i/h)G2t.,> (4) 

where G1 and G2 are infinitesimal 
Hermitian operators constructed from 

dynamical variables of the system at 
the specified times. For a given dynam- 
ical system, then, 

a [ dtL G1 C- G (5) 

t2 

which is the quantum principle of sta- 

tionary action, or Hamilton's principle, 
since there is no reference on the right 
hand side to variations at intermediate 
times. The stationary action principle 
implies equations of motion for the 

dynamical variables and supplies ex- 

plicit expressions for the infinitesimal 
operators G12. The interpretation of 
these operators as generators of trans- 
formations 'on states, and on the dy- 
namical variables, implies commutation 
relations. In this way, all quantum 
dynamical aspects of the system are 
derived from a single dynamical prin- 
ciple. The specific form of the commu- 
tation relations obtained from the 

symmetrical treatment of the usual 
quantum system is given by the matrix 
statement 

[z(t), z(t)] = i t a-. (6) 

Note particularly how the antisymmetry 
of the commutator matches the anti- 

symmetry of the matrix a. 
We may now ask whether this gen- 

eral form of Lagrangian operator, 

L =( A dt- d- Ax -H(x, t), (7) 

950 d 950 

also describes other kinds of quantum 
systems, if the properties of the matrix 
A and of the Hermitian variables x 
are not initially assigned. There is one 

general restriction on the matrix A, 
however. It must be skew-Hermitian, 
as in the realization by the real, anti- 

symmetrical matrix a. Only one other 

simple possibility then appears, that of 
an imaginary, symmetrical matrix. We 
write that kind of matrix as i a, where 
a is real and symmetrical, and desig- 
nate the corresponding variables collec- 

tively by g(t). The replacement of the 

antisymmetrical a by the symmetrical 
a requires that the antisymmetrical 
commutators which characterize z(t) be 
replaced by symmetrical anticommuta- 
tors for g(t), and indeed 

{.(t), s(t)} = h a-1 (8) 

specifies the quantum nature of this 
second class of quantum variable. It 
has no classical analogue. The consist- 
ency of various aspects of the formal- 
ism requires only that the Lagrangian 
operator be an even function of this 
second type of quantum variable. 

Time appears in quantum mechanics 
as a continuous parameter which repre- 
sents an abstraction of the dynamical 
role of the measurement apparatus. 
The requirement of relativistic invari- 
ance invites the extension of this 
abstraction to include space and time 
coordinates. The implication that space- 
time localized measurements are a use- 
ful, if practically unrealizable idealiza- 
tion may be incorrect, but it is a grave 
error to dismiss the concept on the 
basis of a priori notions of measura- 
bility. Microscopic measurement has no 

meaning apart from a theory, and the 
idealized measurement concepts that 
are implicit in a particular theory must 
be accepted or rejected in accordance 
with the final success or failure of that 

theory to fulfill its avowed aims. Quan- 
tum field theory has failed no significant 
test, nor can any decisive confrontation 
be anticipated in the near future. 

Classical mechanics is a determinate 

theory. Knowledge of the state at a 

given time permits precise prediction of 
the result of measuring any property 
of the system. In contrast, quantum 
mechanics is only statistically deter- 
minate. It is the probability of attain- 

ing a particular result on measuring any 
property of the system, not the outcome 
of an individual microscopic observa- 
tion, that is predictable from knowledge 
of the state. But both theories are 
causal-a knowledge of the state at one 
time implies knowledge of the state at 

a later time. A quantum state is speci- 
fied by particular values of an optimum 
set of compatible physical properties, 
which are in number related to the 
number of degrees of freedom of the 

system. In a relativistic theory, the con- 

cepts of "before" and "after" have no 
intrinsic meaning for regions that are 
in space-like relation. This implies that 
measurements individually associated 
with different regions in space-like 
relation are causally independent, or 

compatible. Such measurements can be 
combined in the complete specification 
of a state. But since there is no limit 
to the number of disjoint spatial re- 

gions that can be considered, a relativis- 
tic quantum system has an infinite 
number of degrees of freedom. 

The latter statement, incidentally, 
contains an implicit appeal to a general 
property that the mathematics of physi- 
cal theories must possess-the mathe- 
matical description of nature is not 
sensitive to modifications in physically 
irrelevant details. An infinite total spatial 
volume is an idealization of the finite 
volume defined by the macroscopic 
measurement apparatus. Arbitrarily 
small volume elements are idealizations 
of cells with linear dimensions far be- 
low the level of some least distance 
that is physically significant. Thus, it 
would be more accurate, conceptually, 
to assert that a relativistic quantum 
system has a number of degrees of 
freedom that is extravagantly large, but 
finite. 

The distinctive features of relativistic 

quantum mechanics flow from the idea 
that each small element of three-dimen- 
sional space at a given time is physi- 
cally independent of all other such 
volume elements. Let us label the 
various degrees of freedom explicitly- 
by a point of three-dimensional space 
(in a limiting sense), and by other quan- 
tities of finite multiplicity. The dynami- 
cal variables then appear as 

(9) 

which are a finite number of Hermitian 

operator functions of space-time co- 

ordinates, or quantum fields. The dy- 
namical independence of the individual 
volume elements is expressed by a cor- 

responding additivity of the Lagrangian 
operator 

L = S (dx) ? (10) 

where the Lagrange function S de- 
scribes the dynamical situation in the 
infinitesimal neighborhood of a point. 
The characteristic time derivative or 
kinematical part of L appears ana- 

SCIENCE, VOL. 153 

Xa, X(t)=Xa,(t-xO,X) 



logously in 0 in terms of the variables 
associated with the specified spatial 
point. The relativistic structure of the 
action principle is completed by de- 
manding that it present the same form, 
independently of the particular parti- 
tioning of space-time into space and 
time. This is facilitated by the appear- 
ance of the action operator, the time 

integral of the Lagrangian, as the space- 
time integral of the Lagrange function. 

Accordingly, we require, as a sufficient 
condition, that the latter be a scalar 
function of its field variables, which 

implies that the known form of the time 
derivative term is supplemented by 
similar space derivative contributions. 
This is conveyed by 

? = A(xA x - aOXAx) - 3(c) (11) 

where the AP are a set of four finite 
skew-Hermitian matrices. A specific 
physical field is associated with sub- 
matrices of the At, which are real and 

antisymmetrical for a field sp that obeys 
Bose-Einstein statistics, or imaginary 
and symmetrical for a field f obeying 
Fermi-Dirac statistics. Finally, the 
boundaries of the four-dimensional in- 
tegration region, formed by three- 
dimensional space at the terminal times, 
are described by the invariant concept 
of the space-like surface o, a three- 
dimensional manifold such that every 
pair of points is in space-like relation. 
The ensuing invariant form of the 
action principle of relativistic quantum 
field theory is (we now use atomic 
units, in which h = c = 1) 

0i 

<rl|I 2> = i<l a{rj(dx^) J 2>. (12) 

?2 

Relativity is a statement of equiv- 
alence within a class of descriptions 
associated with similar but different 
measurement apparatus. Space-time co- 
ordinates are an abstraction of the role 
that the measurement apparatus plays 
in defining a space-time frame of refer- 
ence. The empirical fact, that all con- 
nected space-time locations and orienta- 
tions of the measurement apparatus 
supply equivalent descriptions, is inter- 

preted by the mathematical require- 
ment of invariance under group of 
proper orthochronous inhomogenous 
Lorentz transformations, applied to the 
continuous numerical coordinates. There 
is another numerical element in the 

quantum mechanical description that 
has a measure of arbitrariness and ex- 

presses an aspect of relativity. I am re- 
ferring to the quantum mechanical use 
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of complex numbers and of the mathe- 
matical equivalence of the two square 
roots of - 1, - i. What general prop- 
erties of any measurement apparatus is 
subject to our control, in principle, but 
offers only the choice of two alterna- 
tives? The answer is clear-a macro- 
scopic material system can be con- 
structed of matter, or of antimatter! 
But let us not conclude too hastily that 
a matter apparatus and an antimatter 

apparatus are completely equivalent. It 
is characteristic of quantum mechanics 
that the dividing line between apparatus 
and system under investigation can be 
drawn somewhat arbitrarily, as long as 
the measurement apparatus always 
possesses the classical aspects required 
for the unambiguous recording of an 
observation. To preserve this feature, 
the interchange of matter and anti- 
matter must be made on the whole as- 

semblage of macroscopic apparatus and 
microscopic system. Since the observa- 
tional label of this duality is the alge- 
braic sign of electric charge, the micro- 
scopic interchange must reverse the 
vector of electric current j,, while main- 

taining the tensor TMv that gives the flux 
of energy and momentum. But this is 

just the effect of the coordinate trans- 
formation that reflects all four coordi- 
nates. 

It is indeed true that the action prin- 
ciple does not retain its general form 
under either of the two transformations, 
the replacement of i with -i, and the 
reflection of all coordinates, but does 

preserve it under their combined in- 
fluence. In more detail, the effect of 

complex conjugation is equivalent to 
the reversal of operator multiplication, 
which distinguishes fields with the two 

types of statistics. The reflection of all 
coordinates, a proper transformation, 
can be generated by rotations in the 
attached Euclidean space obtained by 
introducing the imaginary time coordi- 
nate x = i x?. This transformation 
alters reality properties, distinguishing 
fields with integral and half-integral 
spin. The combination of the two trans- 
formations replaces the original La- 

grange function 

?2(Piint;, 1/2int, lint, 1/1/2 int) (13) 

with 

Co(linty iepl/2int, iint, 11/2int)- (14) 

If only fields of the types (Pint, Cl/2int 
are considered, which is the empirical 
connection between spin and statistics, 
the action principle is unaltered in 
form. This invariance property of the 
action principle (3) expresses the rela- 

tivity of matter and antimatter. That 
is the content of the so-called TCP 
theorem. The anomalous response of 
the field types S1/2 int, 'int is also the 
basis for the theoretical rejection of 
these possibilities as contrary to gen- 
eral physical requirements of positive- 
ness, namely, the positiveness of prob- 
ability, and the positiveness of energy. 

The concept of space-like surface is 
not limited to plane surfaces. Accord- 
ing to the action principle, an infinitesi- 
mal deformation of the space-like sur- 
face on which a state is specified, 
changes that state by 

a5<rf = i<l| Sdor TA^x, (15) 

which is the infinitely multiple relativis- 
tic generalization of the Schrodinger 
equation 

(<tl = i<tlH( - 5t). (16) 

This set of differential equations must 
obey integrability conditions, which are 
commutator statements about the ele- 
ments of the tensor Thv. Since rigid dis- 
placements and rotations can be pro- 
duced from arbitrary local deforma- 
tions, the operator expressions of the 
group properties of Lorentz transforma- 
tions must be a consequence of these 
commutator conditions. Foremost 
among the latter are the equal-time 
commutators of the energy density TOO, 
which suffice to convey all aspects of 
relativistic invariance that are not of a 
three-dimensional nature. A system that 
is invariant under three-dimensional 
translations and rotations will be 
Lorentz invariant if, at equal times, 

- i[Too(x), To(x'] = 

- (T?k(x) + Tok(x'))Ok(x - X'). (17) 

This is a sufficient condition (4). Addi- 
tional terms with higher derivatives of 
the delta function will occur, in general. 
But there is a distinguished class of 
physical system, which I shall call local, 
for which no further term appears. 
The phrase "local system" can be given 
a physical definition within the frame- 
work we have used or, alternatively, by 
viewing the commutator condition as a 
measurability statement about the 
property involved in the response of a 
system to a weak external gravitational 
field (5). Only the external gravitational 
potential g00 is relevant here. A physi- 
cal system is local if the operators ThV, 
which may be explicit functions of g00 
at the same time, do not depend upon 
time derivatives of g,,. The class of 
local systems is limited (6) to fields of 

spin 0, /2, 1. Such fields are distin- 

951 



guished by their physical simplicity in 
comparison with fields of higher spin. 
One may even question whether con- 
sistent relativistic quantum field theories 
can be constructed for non-local sys- 
tems. 

The energy density commutator con- 
dition is a very useful test of relativis- 
tic invariance. Only a month or so ago I 
employed it to examine whether a 
relativistic quantum field theory could 
be devised to describe magnetic as well 
as electric charge. Dirac pointed out 
many years ago that the existence of 
magnetic charge would imply a quan- 
tization of electric charge, in the sense 
that the product of two elementary 
charges, eg/hc, could assume only cer- 
tain values. According to Dirac, these 
values are any integer or half-integer. 
In recent years, the theoretical possi- 
bility of magnetic charge has been at- 
tacked from several directions. The 
most serious accusation is that the con- 
cept is in violation of Lorentz invari- 
ance. This is sometimes expressed in the 
language of field theory by the remark 
that no manifestly scalar Lagrange 
function can be constructed for a sys- 
tem. composed of electromagnetic field 
and electric and magnetic charge-bear- 
ing fields. Now it is true that there is 
no relativistically invariant theory for 
arbitrary e and g, so that no formally 
invariant version could exist. Indeed, 
the unnecessary assumption that 41 is 
a scalar must be relinquished in favor 
of the more general possibilities that are 
compatible with the action principle. 
But the energy commutator condition 
can still be applied. I have been able 
to show that energy and momentum 
density operators can be exhibited 
which satisfy the commutator condition, 
together with the three-dimensional re- 
quirements, provided eg/hc possesses 
one of a discrete set of values. These 
values are integers, which is more re- 
strictive than Dirac's quantization con- 
dition. Such general considerations shed 
no light on the empirical elusiveness of 
magnetic charge. They only emphasize 
that this novel theoretical possibility 
should not be dismissed lightly. 

The physical systems that obey the 
commutator statement of locality do not 
include the gravitational field. But this 
field, like the electromagnetic field, re- 
quires very special consideration. And 
these considerations make full use of 
the relativistic field concept. The 
dynamics of the electromagnetic field 
is characterized by invariance under 
gauge transformations, in which the 
phase of every charge-bearing field is 
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altered arbitrarily, but continuously, at 
each space-time point while electro- 
magnetic potentials are transformed in- 
homogeneously. The introduction of 
the gravitational field involves not only 
the use of general coordinates and 
coordinate transformations, but the 
establishment at each point of an in- 
dependent Lorentz frame. The gravita- 
tional field gauge transformations are 
produced by the arbitrary reorientation 
of these local coordinate systems at 
each point while gravitational potentials 
are transformed linearly and inhomo- 
geneously. The formal extension of the 
action principle to include the gravita- 
tional field can be carried out (7), 
together with the verification of con- 
sistency conditions analogous to the 
energy density commutator condition 
(8). To appreciate this tour de force, 
one must realize that the operator in 
the role of energy density is a function 
of the gravitational field, which is in- 
fluenced by the energy density. Thus 
the object to be tested is only known 
implicitly. It also appears that the de- 
tailed specification of the spatial distri- 
bution of energy lacks physical sig- 
nificance when gravitational phenomena 
are important. Only integral quantities 
or equivalent asymptotic field properties 
are physically meaningful in that cir- 
cumstance. It is in the further study of 
such boundary conditions that one may 
hope to comprehend the significance 
of the gravitational field as the physi- 
cal mediator between the worlds of the 
microscopic and the macroscopic, the 
atom and the galaxy. 

I have now spoken at some length 
about fields. But it is in the language 
of particles that observational material 
is presented. How are these concepts 
related? Let us turn for a moment to 
the early history of our subject. The 
quantized field appears initially as a 
device for describing arbitrary num- 
bers of indistinguishable particles. It 
was defined as the creator or annihila- 
tor of a particle at the specified point of 
space and time. This picture changed 
somewhat as a consequence of the de- 
velopments in quantum electrodynamics 
to which Feynman, Tomonaga, myself, 
and many others contributed. It began 
to be appreciated that the observed 
properties of so-called elementary par- 
ticles are partly determined by the 
effect of interactions. The fields used 
in the dynamical description were then 
associated with noninteracting or bare 
particles, but there was still a direct 
correspondence with physical particles. 
The weakness of electromagnetic inter- 

actions, as measured by the small value 
of the fine structure constant e2/hnc is 
relevant here, for the same viewpoint 
failed disastrously when extended to 
strongly interacting nucleons and 
mesons. The resulting widespread dis- 
illusionment with quantum field theory 
is an unhappy chapter in the history of 
high energy theoretical physics, although 
it did serve to direct attention toward 
various useful phenomenological calcu- 
lation techniques. 

The great qualitative difference be- 
tween weakly interacting and strongly 
interacting systems was impressed upon 
me by a particular consideration which 
I shall now sketch for you (9). In the 
absence of interactions there is an im- 
mediate connection between the quan- 
tized Maxwell field and a physical par- 
ticle of zero mass, the photon. The null 
mass of the photon is the particle tran- 
scription of a field property, that elec- 
tromagnetism has no well-defined range 
but weakens geometrically. Now one 
of the most important interaction as- 
pects of quantum electrodynamics is the 
phenomenon of vacuum polarization. A 
variable electromagnetic field induces 
secondary currents, even in the absence 
of actual particle creation. In particular, 
a localized charge creates a counter 
charge in its vicinity, which partially 
neutralizes the effect of the given 
charge at large distances. The implica- 
tion that physical charges are weaker 
than bare charges by a universal factor 
is the basis for charge renormalization. 
But once the idea of a partial neutraliza- 
tion of charge is admitted one cannot 
exclude the possibility of total, charge 
neutralization. This will occur if the 
interaction exceeds a certain strength 
such that an oppositely charged particle 
combination, of the same nature ias the 
photon, becomes so tightly bound that 
the corresponding mass diminishes to 
zero. Under these circumstances no 
long-range fields would remain and the 
massless particle does not exist. We 
learn that the connection between the 
Maxwell field and the photon is not an 
a priori one, but involves a specific 
dynamical aspect, that electromagnetic 
interactions are weaker than the critical 
strength. It is a natural speculation that 
another such field exists which couples 
more strongly than the critical amount 
to nucleonic charge, the property car- 
ried by all heavy fermions. That hy- 
pothesis would explain the absolute 
stability of the proton, in analogy with 
the electromagnetic explanation of elec- 
tron stability, without challenging the 
uniqueness of the photon. 

SCIENCE, VOL. 153 



A field operator is a localized excita- 
tion which, applied to the vacuum state, 
generates all possible energy-momen- 
tum, or equivalently, mass states that 
share the other distinguishing properties 
of the field. The products of field op- 
erators widen and ultimately exhaust 
the various classes of mass states. If an 
isolated mass value occurs in a particu- 
lar product, the state is that of a stable 
particle with corresponding characteris- 
tics. Should a small neighborhood of a 
particular mass be emphasized, the 
situation is that of an unstable particle, 
with a proper lifetime which varies in- 
versely as the mass width of the excita- 
tion. The quantitative properties of the 
stable and unstable particles that may be 
implied by a given dynamical field 
theory cannot be predicted with pres- 
ently available calculation techniques. 
In these matters, to borrow a phrase of 
Ingmar Bergman, and St. Paul, we see 
through a glass, darkly. Yet, in the 
plausible qualitative inference that a 
substantial number of particles, stable 
and unstable, will exist for sufficiently 
strong interactions among a few fields 
lies the great promise of relativistic 
quantum field theory. 

Experiment reveals an ever growing 
number and variety of unstable par- 
ticles, which seem to differ in no 
essential way from the stable and long- 
lived particles with which they are 
grouped in tentative classification 
schemes. Surely one must hope that 
this bewildering complexity is the 
dynamical manifestation of a concep- 
tually simpler substratum, which need 
not be directly meaningful on the ob- 
servational level of particles. The rela- 
tivistic field concept is a specific realiza- 
tion of this general grouping toward a 
new conception of matter. 

There is empirical evidence in favor 
of such simplification at a deeper 
dynamical level. Strongly interacting 
particles have been rather successfully 
classified with the aid of a particular in- 
ternal symmetry group. It is the unitary 
group SU3. The dimensionalities of 
particle multiplets that have been identi- 
fied thus far are 1, 8, and 10. But the 
fundamental multiplet of dimensionality 
3 is missing. It is difficult to believe in 
the physical significance of some trans- 
formation group without admitting the 
existence of objects that respond to the 
transformations of that group. Accord- 
ingly, I would describe the observed 
situation as follows. There are sets of 
fundamental fields that form triplets 
(10) with respect to the group U3. The 
excitations produced by these fields are 
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very massive and highly unstable. The 
low-lying mass excitations of mesons 
and baryons are generated by products 
of the fundamental fields. If these fields 
are assigned spin 1/2, as a specific 
model, it is sufficient to consider cer- 
tain products of two and three fields 
to represent the general properties of 
mesons and baryons, respectively. 

The cogency of this picture is em- 
phasized by its role in clarifying a re- 
cent development in symmetry classi- 
fication schemes. That is the provocative 
but somewhat mysterious suggestion 
that the internal symmetry group SU3 
be combined with space-time spin trans- 
formations to form the larger unitary 
group SU;. This idea, with its relativis- 
tic generalizations, has had some strik- 
ing numerical successes but there are 
severe conceptual problems in reconcil- 
ing Lorentz invariance with any union 
of internal and space-time transforma- 
tions, as long as one insists on imme- 
diate particle interpretation. T,he situa- 
tion is different if one can refer to the 
space-time localizability that is the hall- 
mark of the field concept (11). Let us 
assume that the interactions among the 
fundamental fields are of such strength 
that field products at practically co- 
incident points suffice to describe the 
excitation of the known relatively low- 
lying particles. The resulting quasi-local 
structures are in some sense fields that 
are associated with the physical par- 
ticles. I call these phenomenological 
fields, as distinguished from the funda- 
mental fields which are the basic dyna- 
mical variables of the system. Linear 
transformations on the fundamental 
fields can simulate the effect of external 
probes, which may involve both unitary 
and spin degrees of freedom. If these 
external perturbations are sufficiently 
gentle, the structure of the particles will 
be maintained and the phenomenologi- 
cal fields transformed linearly within 
definite multiplets. It is not implausible 
that the highly localized interactions 
among the phenomenological fields will 
exhibit a corresponding symmetry. Thus 
combined spin and unitary transforma- 
tions appear as a device for characteriz- 
ing some gross features of the unknown 
inner field dynamics of physical par- 
ticles, as it operates in the neighbor- 
hood of a specific point. But these 
transformations can have no general 
significance for the transfer of excita- 
tions from point to point, and only 
lesser symmetries will survive in the 
final particle description. 

Phenomenological fields are the basic 
concept in formulating the practical 

calculation methods of strong inter- 
action field theory. They serve to iso- 
late the formidable problem of the 
dynamical origin of physical particles 
from the more immediate questions re- 
ferring to their properties and inter- 
actions. In somewhat analogous circum- 
stances, those of non-relativistic many- 
particle physics, the methods and view- 
point of quantum field theory (12) have 
been enormously successful. They have 
clarified the whole range of cooperative 
phenomena, while employing relatively 
simple approximation schemes. I believe 
that phenomenological relativistic quan- 
tum field theory has a similar future, 
and will replace the algorithms that 
were introduced during the period of 
revolt from field theory. But the intui- 
tion that serves so well in non-relativis- 
tic contexts does not exist for these new 
conditions. One has still to appreciate 
the precise rules of phenomenological 
relativistic field theory, which must 
supply a self-consistent description of 
the residual interactions, given that the 
strong fundamental interactions have 
operated to compose the various physi- 
cal particles. And when this is done, 
how much shall we have learned, and 
how much will remain unknown, about 
the mechanism that builds matter from 
more primitive constituents? Are we not 
at this moment, 

. . . like stout Cortez when with eagle eyes 
He stared at the Pacific-and all his men 
Look'd at each other with a wild surmise- 
Silent, upon a peak in Darien. 

And now it only remains for me to 
say: Tack sa mycket f6r uppmdrksam- 
heten. 
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