
dividuals of each of these species and 
of Ips yohoensis are gynogenic; in fact 
all five "species" probably should be 
considered a single species with poly- 
morphic females; all males are indis- 
tinguishable cytologically or morpho- 
logically, but the females differ mor- 

phologically. 
Matings of males whose sisters are 

of one morphological form to normal 
females of another form result in bi- 
sexual progeny containing females that 
are morphologically highly variable. 
Without exception, however, SR fe- 
males produce broods of daughters al- 
most exactly like themselves, whether 
mated to males whose sisters were 
of the same or a different morphologi- 
cal form, or even to males of two 

distinctly different species such as Ips 
borealis and Ips perturbatus. Regard- 
less of the type of mating, hatchability 
in SR broods approaches 100 percent, 
whereas normal bisexual Ips tridens 
mated to Ips borealis or Ips per- 
turbatus produce eggs of which none 
hatch. Females, both SR and normal, 
fail to oviposit unless mated. 

This gynogenic condition appeared 
spontaneously in two, laboratory mat- 
ings of females from bisexual broods. 
There was no history of gynogenesis 
in either of the parent lines and out- 

matings of brothers produced bisexual 

progeny. Genes for gynogenesis may 
be floating in certain populations and 
may be occasionally expressed; once in- 
duced, the condition is probably 
obligatory for the duration of that par- 
ticular line. 

One may wonder how widely spread 
is the SR condition in the Scolytidae. 
In addition to the species mentioned, 
we have discovered gynogenic strains 
of Ips borealis and Ips perturbatus and 
a SR condition in a species of 
Pityophthorous, similar to that in O. 
latidens. Several species of Xyleborus 
are reported to have 15 to 20 females 
per male in the usual colony (14). 
Nevertheless, not a single SR strain 
was encountered while we reared sev- 
eral hundred thousand Ips confusus. 
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Evoked Potential Correlates 

of Generalization 

Abstract. Late components of evoked 
potentials recorded during the occur- 
rence and nonoccurrence of generali- 
zation are different. During generaliza- 
tion the evoked response waveshapes 
resembled those elicited by the condi- 
tioned stimulus during correct perform- 
ance. The differences are statistically 
significant. 

When an animal learns to perform 
a conditioned response upon presenta- 
tion of a particular conditioned stimu- 
lus, we assume that a neural represen- 
tation of this experience is stored 
somewhere in the brain. If a novel, but 
similar, stimulus is subsequently pre- 
sented to the trained animal, perform- 
ance of the previously learned response 
sometimes occurs and is referred to as 
generalization. To explain this phenom- 
enon, it seems reasonable to suggest 
that the novel stimulus recalls a stored 
representation of prior experience. 

Electrophysiological recordings, taken 
from electrodes chronically implanted 
in cat brains, have been reported (1) 
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ulus which is actually present (F2), 
while the other is approximately that 
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used during training (F1). Since no 

physical event at frequency F1 is pres- 
ent in the environment of the animal, 
electrical rhythms at F1 have been as- 
sumed to reflect the recall of a neural 

representation of prior experience from 

storage in the brain. This interpretation 
is supported by the observation that 

rhythms at F1 are no longer present 
during F2 stimulation, after the animal 
has been taught to differentiate stimuli 
at the two frequencies. 

This report presents some results ob- 
tained in more recent studies in which 

computer analysis was applied to elec- 

trophysiological data recorded during 
generalization. Studies were carried out 
on four cats, each bearing 34 electrodes 

chronically implanted in numerous 
cortical and subcortical brain regions. 
These animals were trained in perform- 
ance of a lever-press to avoid shock 
within 15 seconds after onset of a 

flickering light (10 cy/sec). After ap- 
preciable overtraining, the animals 
were subjected to test sessions in which 
occasional trials with a 7.7-cy/sec 
flicker were interspersed among presen- 
tations of the conditioned stimulus of 
10 cy/sec. If generalization occurred, 
the test stimulus was terminated when 
the lever was pressed. If no behavioral 

response occurred after 30 seconds, the 
test stimulus was terminated without 
electrical shock. Electrophysiological 
responses obtained in all sessions were 
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Fig. 1. Average evoked potentials recorded 
from lateral geniculate body (left) and 
nucleus reticularis (right) during behav- 
ioral trials that resulted in conditioned 
response performance (a) to 10-cy/sec 
flicker, and generalization (b) and no re- 
sponse (c) to 7.7-cy/sec flickers. Generali- 
zation and no-response averages are based 
on 42 evoked potentials, and conditioned- 
response averages on 100 evoked poten- 
tials. Analysis epoch is 90 milliseconds. 
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Cerebral Concussion in the Monkey: 
An Experimental Model 

Abstract. A statistically significant 
experimental model has been developed 
for reproducing head injury by impact 
in the monkey. Results with 80 mon- 
keys subjected to occipital impact un- 
der specified conditions (duration of 
phenomena, 1 to 10 milliseconds) en- 
able the construction of curves relating 
the production of experimental cerebral 
concussion in 10, 50, and 90 percent 
of the monkeys to the average impulse 
of the blow in pounds-seconds, as well 
as to the average linear acceleration 
of the head. These curves are proposed 
as a baseline from which blows to 
various parts of the head, as well as 
nonimpacting impulsive loads, can be 
studied under various conditions of 
protection and according to various time 
regimes. 

Despite many attempts to describe 
the mechanical and physiological re- 
sponses of the central nervous system 
to head impact (1-4), little is known 
about the relation of impact to response; 
still less about the response itself. 
The impact-response relation is funda- 
mental to design of rational head pro- 
tection-only one of the practical needs 
for such knowledge. However, there is 
a more basic aspect to the understand- 
ing of brain response to impact. The 
sudden abolition of consciousness after 
a blow on the head-cerebral concus- 
sion-includes, as may be expected, a 
multitude of events occurring simul- 
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son to suspect that study of some of 
these events-their functional disor- 
ganization and reorganization during 
and after impact-could lead to better 
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understanding of the functions of the 
nervous system. 

We now report a technique whereby 
the injurious aspect of head impact 
can be quantitatively determined and 
related to the occurrence of concussion. 
We used 80-odd rhesus monkeys (Ma- 
caca mulatta) in these experiments. The 
value of using primates in such work 
has been discussed (5, 6); it is argued 
that the anatomical similarities between 
monkey and man are more likely to 
permit valid extrapolation of data than 
information obtained from quadrupeds. 

Adult rhesus monkeys, anesthetized 
with Nembutal and seated in a specially 
designed chair, received blows to the 
occipital region of the head. The blows 
were delivered by a piston actuated by 
compressed air; it weighed 3.8 lb (1.4 
kg) and had a 1 in.2 (6.45-cm2) hard- 
rubber cap at the impacting end. By 
control of the air pressure behind the 
piston, impacts could be varied from a 
gentle tap to a fatal, crushing blow. The 
posture of the monkey was such that 
the head could move freely forward 
after impact, although the body was 
restrained by waist, lap, arm, and leg 
belts. 

The impact and response of the head 
were measured directly. The applied 
force as a function of time was sensed 
by a bonded strain-wire dynamometer 
fitted in series between piston and im- 
pacting rubber tip; piston velocity was 
recorded as the voltage generated as a 
magnet, encased in the piston body, 
passed through a surrounding coil. 

Responses of the head were measured 
by means of photography and acceler- 
ometers. Displacement of the head with 
time was determined from high-speed 
motion pictures taken at 4000 frames 
per second, in which a selected point 
on the skin, at an estimated projection 
of the center of gravity of the monkey's 
head, was compared with a stationary 
background grid. Linear acceleration- 
time history of the head was sensed by 
piezoelectric crystal accelerometers 
weighing 1 g and fixed rigidly to the 
skull. 

Changes in intracranial fluid pres- 
sures with time were sensed at various 
sites by low-impedance semiconductor 
strain-gage pressure transducers; they 
were placed in holes bored in the skull 
and attached so that the 5 mm-diameter 
sensitive surface was flush with the 
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occipital region of the head. The blows 
were delivered by a piston actuated by 
compressed air; it weighed 3.8 lb (1.4 
kg) and had a 1 in.2 (6.45-cm2) hard- 
rubber cap at the impacting end. By 
control of the air pressure behind the 
piston, impacts could be varied from a 
gentle tap to a fatal, crushing blow. The 
posture of the monkey was such that 
the head could move freely forward 
after impact, although the body was 
restrained by waist, lap, arm, and leg 
belts. 

The impact and response of the head 
were measured directly. The applied 
force as a function of time was sensed 
by a bonded strain-wire dynamometer 
fitted in series between piston and im- 
pacting rubber tip; piston velocity was 
recorded as the voltage generated as a 
magnet, encased in the piston body, 
passed through a surrounding coil. 

Responses of the head were measured 
by means of photography and acceler- 
ometers. Displacement of the head with 
time was determined from high-speed 
motion pictures taken at 4000 frames 
per second, in which a selected point 
on the skin, at an estimated projection 
of the center of gravity of the monkey's 
head, was compared with a stationary 
background grid. Linear acceleration- 
time history of the head was sensed by 
piezoelectric crystal accelerometers 
weighing 1 g and fixed rigidly to the 
skull. 

Changes in intracranial fluid pres- 
sures with time were sensed at various 
sites by low-impedance semiconductor 
strain-gage pressure transducers; they 
were placed in holes bored in the skull 
and attached so that the 5 mm-diameter 
sensitive surface was flush with the 
inner wall of the cranial vault; they 
were secured to the bone with self- 
tapping screws, and a layer of dental 
cement assured water-tight closure of 
the skull. The outputs of the various 
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Fig. 1. Oscillographic record of physical 
measurements during impact; traces for 
velocity, acceleration, force, and intra- 
cranial pressure with a 1000-cy/sec time 
trace are displayed. 

gages and transducers were fed into 
amplifiers and recorded by a tape re- 
corder that could be played back into a 
direct-writing string oscillograph. Tim- 
ing impulses were provided by a tuning- 
fork oscillator (1000 cy/sec). 

The level of anesthesia in each mon- 
key was carefully controlled so that 
aversive response to noxious stimuli, 
especially ear pinch, was consistently 
present; abolition by impact of such re- 
sponse was the criterion of concussion, 
and the duration of abolition was the 
duration of cerebral concussion. This 
criterion proved significantly more reli- 
able than suspension of the corneal and 
palpebral reflexes or changes in other 
physiological indices such as the elec- 
troencephalogram, electrocardiogram, 
arterial blood pressure, respiration, and 
cerebrospinal fluid pressure, which were 
also recorded before, during, and after 
impact. 

Impact force and velocity of the 
piston, the displacement-time history of 
the head relative to a fixed grid, the 
linear acceleration of the head, and in- 
tracranial pressures were measured dur- 
ing most of the tests on the 80 mon- 
keys. Data from experiments in which 
skull fracture was produced and from 
tests in which multiple blows were 
given are not included in this study. 
A typical record (Fig. 1) shows that 
the applied force-time curve is roughly 
triangular; total duration is about 6 
msec and it reaches a peak in about 2 
msec. As would be expected, the ac- 
celeration and intracranial-pressure 
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ing most of the tests on the 80 mon- 
keys. Data from experiments in which 
skull fracture was produced and from 
tests in which multiple blows were 
given are not included in this study. 
A typical record (Fig. 1) shows that 
the applied force-time curve is roughly 
triangular; total duration is about 6 
msec and it reaches a peak in about 2 
msec. As would be expected, the ac- 
celeration and intracranial-pressure 
pulses follow about the same pattern. 
In all records, the duration of the force 
was between 1 and 10 msec, averaging 
4 msec. 

The data describing input and re- 
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