
Information Theory 
after 18 Years 

After years of theoretical development, information 

theory may fulfill its engineering promise. 

E. N. Gilbert 

There are fashions in science. Who 
in 1900 foresaw the neglect which mod- 
ern mathematicians accord quaternions 
and elliptic functions? By the year 2000 
information theory may exist only in a 
few unread definitive treatises, pre- 
served by college librarians as forlorn 
monuments to misspent lives. To avert 
this end, information theory must sup- 
ply something more tangible than vague 
insights. I hope to show that the gap 
between theory and practice is closing. 

Codes 

The identifying feature of informa- 
tion theory, the feature which dis- 
tinguishes it from cybernetics or from 
other branches of statistical communi- 
cation theory, is its use of a particu- 
lar way of "measuring" information. 
Although earlier authors (1) had sug- 
gested various measures of informa- 
tion, C. E. Shannon is the real father 
of information theory. In a paper which 

appeared in 1948 (2), he not only de- 
fined a reasonable measure for informa- 
tion but also applied it to prove remark- 
able theorems which provide criteria 
for evaluating and comparing different 
communication systems. These theo- 
rems came at an advanced stage of 
the communications art; a radio engi- 
neer in 1948 could use amplitude mod- 

ulation, frequency modulation, phase 
modulation, single side-band modula- 

tion, or pulse code modulation, or he 
could invent something new without 
much trouble. The need for good ways 
of evaluating communication systems 
was evident, and Shannon's paper re- 
ceived immediate attention. 

Not all the attention came from com- 
munication -engineers, however. Mathe- 
maticians found his paper a gold mine 
of statistical and combinatorial prob- 
lems, partly because Shannon, writing 
for engineering readers, had not proved 
his theorems in the greatest possible 
generality or with the meticulous rigor 
that some mathematicians require (3), 
but mainly because he raised difficult 
mathematical questions which even to- 

day are unanswered. Physicists (4) 
were interested in a new interpretation 
of entropy as information. Psycholo- 
gists found that the new information 
measure gave a convenient quantitative 
estimate of the difficulty of certain ex- 

perimental tasks. Other applications 
have been to linguistics (5), music (6), 
cryptography (7), and gambling (8). 
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The response to Shannon's paper was 
so great that by 1953 the Institute of 
Radio Engineers formed a Professional 
Group on Information Theory with a 
journal of its own. Information and 
Control, another journal d,evoted to in- 
formation theory, began publication 
in 1958. 

Information theory was a glamor sci- 
ence for many years. It was popularly 
supposed that information theory held 
the key to progress in remote fields 
to which in fact it did not apply. In- 
teresting evidence of this remains in 
some of the editorials (9) which ap- 
peared in the Transactions of the Pro- 
fessional Group on Information Theory 
between 1955 and 1959: the editors 
seem appalled by a flood of worthless 
interdisciplinary papers submitted in the 
name of information theory. 

As late as 1959 one respected mathe- 
matician (10) publicly questioned 
whether information theory was mathe- 
matically sound. On the other hand, 
many practical engineers had the pri- 
vate opinion that it was too much a 
mathematical idealization to be of help 
to them in real-life problems. It has 
been hard to answer the latter objec- 
tion; few real communication systems 
designed since 1948 show decisive in- 
fluence by information theory. More- 
over, earlier inventions, such as the 
Morse code, the vocoder (11), the com- 

pandor (12), and pulse code modula- 
tion (13), demonstrate that engineers 
can achieve by "common sense" results 
close in spirit to information theory. 
One answer (14) to the objection is 
that information theory provides in- 

sights which guide the engineer with- 
out solving his problem in detail. It is 
also argued (15) that information theory 
will soon become an essential tool in 
the design of increasingly complex digi- 
tal communication systems. 

As a concrete setting for the defini- 
tion of information, let us consider the 

following basic communication prob- 
lem. Messages must be sent over a 
wire as sequences of electrical pulses, 
as in telegraphy. Suppose that each 

pulse must be one of two allowed 

pulses-say, a positive pulse or a nega- 
tive pulse-and that (unlike the dot 
and dash pulses of telegraphy) the two 
basic pulses require equal times for 
transmission. It is customary to use 

binary digits 0, 1 to represent the two 

pulses. The messages come from a 
source which may not produce binary 
digits directly. Instead, the messages 
are sequences composed of certain let- 
ters LI, L2, . . . , LK. For illustration, 
I often take the Li to be the 27 letters 
of the English alphabet, counting the 
word space (the hyphen of Table 1, 
column 1) as a letter. However, for 
other sources the L, might be decimal 

digits, speech phonemes, or other sym- 
bols. In order to transmit these mes- 
sages one must invent a code which 

represents messages as sequences of 

binary digits. 
Only "uniquely decipherable" codes 

will be allowed; that is, two different 

messages must not encode into the same 
binary sequence. The three codes of 
Table 1 encode English messages, let- 
ter by letter, into binary digits. For 

example, code 2 transmits the message 
BE- as 011110010000. Each code in 
Table 1 has the following property, 
which guarantees unique decipherabili- 
ty: the digits of one letter never ap- 
pear as the leading digits of a different 
letter (consider, by contrast, the pos- 
sibilities for confusion in the three- 
letter code A = 01, B = 010, C - 1). 
Not all uniquely decipherable codes 
have this property (consider the code 
A = 1, B = 10, C = 00), and in 
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general it takes some calculating to de- 
cide whether a given code is uniquely 
decipherable (16). 

Morse code uses a letter space- 
really a third kind of digit-as a syn- 
chronizing sign to prepare the receiver 
for the start of the next letter. A pos- 
sible danger, in a strictly binary sys- 
tem, is that the receiver may accidental- 
ly begin decoding in the middle of a 
letter and thereafter continue out of 
step with the transmitter. Information 
theory usually ignores such timing prob- 
lems, and they need not be serious. 
Code 2 of Table 1 is actually Morse 
code with 1, 01, and 00 substituted 
for dot, dash, and letter space; then 
100 identifies the end of a letter. Code 
1 has some synchronizing ability be- 
cause it is not "exhaustive"-that is, 
there exist sequences, such as 1101 . ..., 
which are not encoded forms of any 
real messages. Ultimately the decoder 
may attempt to decode 11011 and 
realize that it is out of step. "Comma- 
free codes" (17) have been deliberately 
designed to be nonexhaustive to such 
an extent that the decoder cannot de- 
code a single letter when it is out of 
step. Comma-free codes were invented 
originally for a theory of genetic struc- 
ture. Unlike codes 1 and 2, code 3 
is exhaustive. However, code 3, like 
most other codes in which LZ, L2, ..., 
LK have unequal numbers of digits, 
has a self-synchronizing ability (18) 
which returns the decoder to syn- 
chronism after a few letters. 

Information 

Table 1 gives estimates of the prob- 
ability Pi with which letter Li occurs in 
English text (19). If a code uses N1 

binary digits to encode L,, then D, 
the mean number of digits per letter, 
is p1N, + p,N2 + - .. .. p,-NJK. 
The means, D, for codes 1, 2, and 3 
of Table 1 are, respectively, 5, 4.868, 
and 4.120 digits per letter. Given pi, 

PjI for a source, the uniquely 
decipherable code which encodes mes- 
sages letter by letter and has the small- 
est D can be constructed by a proce- 
dure developed by D. Huffman (20). 
For the probabilities in Table 1, code 
3 is the minimizing code. In general 
the minimizing code has N - 

log,pi, as may be verified for Table 1 
by comparing columns 5 and 6. Then 
the minimum value of D is near a 
number H defined as the following sum: 

H = -- pilog2.p. (1) 

For Table 1, H equals 4.08. Actually 
the minimum D satisfies H - D f H 
+ 1, in general. Note the formal re- 
semblance between H and the entropy 
function of statistical mechanics. 

Instead of encoding letter by letter 
one might encode other units-say, 
blocks B letters long. Huffman's al- 
gorithm provides an efficient code if 
the probabilities of occurrence of the 
blocks (271; in number, in the case of 
English) are known. Equation 1 gives 

Table 1. Binary codes for English text. 

Li Pi Code 1 Code 2 Code 3 -log2,p 

-.1859 00000 00 000 2.4 
A .0642 00001 10100 0100 4.0 
B .0127 00010 0111100 011111 6.3 
C .0218 00011 01101100 11111 5.5 
D .0317 00100 011100 01011 5.0 
E .1031 00101 f00 101 2.9 
F .0208 00110 1101100 001100 5.6 
G .0152 00111 0101100 011101 6.0 
H .0467 01000 111100 1110 4.4 
I .0575 01001 1100 1000 4.1 
J .0008 01010 101010100 0111001110 10.4 
K .0049 01011 0110100 01110010 7.7 
L .0321 01100 1011100 01010 5.0 
M .0198 01101 010100 001101 5.7 
N .0574 01110 01100 1001 4.1 
0 .0632 01111 01010100 0110 4.0 
P .0152 10000 10101100 011110 6.0 
Q .0008 10001 010110100 0111001101 10.4 
R .0484 10010 101100 1101 4.4 
S .0514 10011 11100 1100 4.3 
T .0796 10100 0100 0010 3.7 
U .0228 10101 110100 11110 .5 
V .0083 10110 1110100 0111000 6.9 
W .0175 10111 1010100 001110 5.8 
X .0013 11000 01110100 0111001100 9.6 
Y .0164 11001 011010100 001111 5.9 
Z .0005 11010 01011100 0111001111 11.0 
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an estimate of the minimum mean 
number of digits per block if the pi 
are reinterpreted as block probabilities. 
Generally the mean number of digits 
needed per letter decreases as the en- 
coded unit lengthens. Word-frequency 
counts show that 2.14 digits per letter 
would suffice to encode English word 
by word. An experiment by Shannon 
(21) indicated that about one digit per 
letter might suffice to encode English 
in blocks of 100 letters. 

In general, even complicated codes 
cannot represent the messages of a 
source by arbitrarily small numbers of 
digits per letter. The mean numbers of 
digits per letter used by all possible 
codes for a given source have some 
greatest lower bound. The information 
rate of the source is defined to be this 
greatest lower bound. The information 
rate is given in units of "bits" (a con- 
traction of "binary digits") per letter. 
Shannon's experiment (21) suggests that 
the information rate of an English-text 
source is near one bit per letter. When 
a source produces letters at a given 
rate-say, n letters per second-its in- 
formation rate, in bits per letter, may 
be multiplied by n to express the in- 
formation rate in bits per second. 

The information rate of certain 
sources can be given simply. If a 
source produces letter Li, with prob- 
abilities of occurrence pi, independent- 
ly, then H, given by Eq. 1, is its in- 
information rate. Such a source, using 
English letters with the probabilities of 
occurrence given in Table 1, produces 
messages like the following typical 
sample: 

LT-EEED-TK-O-IT-EHILIGD- 
SI-RESCO-ENT 

A source which produces successive let- 
ters independently and with equal prob- 
abilities (pi = 1/K) has the highest 
information rate of all sources using 
the K letters L1, ..., K.. For this 
"maximizing source," Eq. 1 simplifies 
to H _ log,K bits per letter. Messages 
from the maximizing source for the 
English alphabet have incorrect letter 
probabilities and so look even less like 
English than the sample given above 
does. The high rate log227 = 4.755 
bits per letter reflects the absence of 
all the usual constraints (U follows Q, 
E is more common than J, and so on) 
which make the future of real English 
text somewhat predictable from its past. 
Since the messages of a real English 
source contain only 20 percent as much 
information per letter as this maximiz- 
ing source produces, English is some- 
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times said to be 80 percent redundant. 
Like the English source, most other 

real sources are very redundant. A 
television source is a good example. 
A rectangular array of 200,000 dots, 
each dot having one of 64 brightnesses, 
is a good approximation to a television 

picture. To encode television dot by 
dot (essentially what is done in prac- 
tice) takes six binary digits per dot or 
1,200,000 binary digits per picture. 
Actually there is a strong tendency for 
dots near each other to have the same 
brightness. Successive pictures also tend 
to be almost identical. These constraints 
make the information rate of television 
much lower than 1,200,000 bits per 
picture (22). 

Really efficient codes for redundant 
sources like English text or television 
could be very valuable. Although infor- 
mation theory shows, in principle, how 
to find the codes, there are enormous 
practical difficulties, first in measuring 
the needed probabilities and afterward 
in using the more complicated codes. 
Coding for facsimile has been the most 
successful effort. A reasonably simple 
code was designed in 1957 to transmit 
drawings and diagrams by facsimile; 
it uses about 12 percent as many digits 
as a conventional system (23). This 
facsimile system has as yet found no 
commercial acceptance. 

Channels 

Although the information rate of a 
source was defined originally in terms 
of numbers of binary digits per letter, 
this rate also will determine how fast 
messages can be sent when symbols 
other than binary digits are transmitted. 
A channel might, for example, trans- 
mit messages as decimal digits 0, 1, 

. . .9. It is now assumed that each 
kind of transmitted symbol requires a 
known time for transmission, not neces- 
sarily the same for all symbols (dots 
and dashes, for example, have differ- 
ent transmission times). Again, the rate, 
in letters per second, at which mes- 
sages from the source are transmitted 
depends on the code. 

Consider, first, noiseless channels- 
channels for which the received sym- 
bol always agrees with the transmitted 
symbol. A good code for a noiseless 
channel should handle messages at a 
high rate. A noiseless channel has a 
capacity, C, measured in bits per sec- 
ond, for which Shannon proved the 
following. No source can be encoded 
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to signal over the channel at an infor- 
mation rate exceeding C bits per sec- 
ond. However, every source with a non- 
zero information rate H bits per letter 
can be encoded to signal at a letter 
rate n letters per second, so that the 
information rate nH, in bits per sec- 
ond, is as close to C as is desired. 

A noiseless channel which transmits 
K different kinds of symbols, each re- 
quiring a time T seconds for transmis- 
sion, has channel capacity C 

(logK) / T. 
A channel is called "noisy" if the 

symbols which emerge at its output 
cannot be predicted with certainty from 
the symbols which were transmitted at 
the input. The binary symmetric chan- 
nel and the Gaussian channel, which are 
described in the next two paragraphs, 
are the noisy channels which have 
received the most theoretical attention. 

The binary symmetric channel ac- 
cepts binary digits at its input and 
emits binary digits at its output. Both 
0 and 1 require T seconds for trans- 
mission. For each digit the channel 
makes an independent random choice 
to decide whether to transmit the digit 
correctly or incorrectly. Both 0 and 1 
have the same probability p of being 
in error. This simple model approxi- 
mates some digital channels very well. 
In practice, other kinds of binary 
noise are often encountered. In par- 
ticular, errors may come in "bursts"- 
isolated clusters of several erroneous 
digits close together. The independent 
errors of the binary symmetric chan- 
nel do not tend to group into bursts. 

The Gaussian channel transmits real 
numbers. A real number x at the in- 
put is received as x - y, where y 
is a second real number representing 
noise; y is chosen independently of x 
and from a Gaussian (normal) distribu- 
tion of mean zero and a given variance 
N. Not all long sequences xx2., ... 
of real numbers are accepted by this 
channel, only those for which the aver- 
age of the x2 is less than a given 
number S. This channel is a useful 
model of a radio link in which the 
signal-to-noise power ratio at the re- 
ceiver is S/N. To anyone accustomed 
to picturing a radio signal as a func- 
tion x(t), representation of signals as 
discrete sequences of real numbers may 
seem odd. Nevertheless, if the radio 
channel occupies a frequency band W 
cycles per second wide, a "sampling" 
theorem (24) applies, which reconstructs 
a signal x(t) exactly by interpolating 
between the discrete sequence of sample 

values x(k/2W) (k = ... ,-1,0,1, . ). 
Thus, sample values are sent once 
every T = 1/2W seconds. The Gaus- 
sian noise of this channel is a good 
representation both of the thermal 
noise within a radio receiver and of 
some kinds of static. It is sometimes 
used, for want of a better simple model, 
to represent interference from other ra- 
dio stations. However, it cannot ac- 
count for multipath distortion and fad- 
ing. 

Noise 

In designing a code for a noisy chan- 
nel one must compromise between 
speed and reliability. For example, sup- 
pose one must transmit a long sequence 
of decimal digits over the Gaussian 
channel. A message-say, 301992 . 
-could be encoded as a single real 
number, x - .301992 . . . which 
the Gaussian channel transmits in just 
T seconds. However, the noise would 
make all but the first few received 
digits unreliable. One could send the 
digits in groups of three, as 
.301,.992, . . .; in twos, as .30,.19, 
.92, . . .; singly, as .3,.0,.1,.9,.9,.2, . . .; 
or perhaps two times each for still 
greater reliability, as .3,.3,.0,.0,.1, 
.1,.9 . . . It seems that one must 
use slower and slower codes to achieve 
greater reliability. Suppose one is satis- 
fied if, on the average, a prescribed 
small nonzero fraction E of the re- 
ceived letters are decoded incorrectly. 
The fastest allowable signaling rate then 
decreases as E decreases. As e ap- 
proaches zero, must not the signaling 
rate also approach zero? Shannon's 
1948 paper gave a surprising "No" in 
answer to that question, by means of 
the following coding theorem. 

Even a noisy channel has a capacity 
C which is not, in general, zero. The 
properties of this capacity are similar 
to those of the capacity of a noiseless 
channel. If one must signal over the 
channel at an information rate R ex- 
ceeding C bits per second, then the 
error probability must exceed some 
positive number E(R); there is no hope 
of obtaining e < e(R) at that high 
rate. However, if, for any source, an 
error probability e and a rate R less 
than C are given, then there exists a 
way of coding the source for the 
channel so that the information rate is 
more than R bits per second and, more- 
over, so that the probability of error 
is less than e. 
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The capacity of the binary sym- 
metric channel is 

C= l +plogSp+ 
(1 -p) log (1- p)]/T 

(2) 

bits per second. The Gaussian channel 
has capacity 

C- Wlog2(l1 +S/N) (3) 

bits per second. 

Complexity 

The channel capacity represents an 
ideal rate against which to compare 
rates really achieved. Such comparisons 
usually reveal that much improvement 
is possible. To obtain an improvement 
one expects to use a more complex 
code. The practical question is, How 
much improvement can be bought for 
a moderate increase in complexity? 

A "block code" breaks a message 
from the source into blocks of some 
fixed length, say B seconds, and then 
encodes block by block. In the original 
coding theorem rates near C were ob- 
tained as B approached infinity. Large 
B requires that the encoder and the 
decoder process message data in large 
amounts. Thus, B is one index of the 
complexity of a block code. Recent 
proofs of the coding theorem show the 
influence of the parameter B more 
clearly. For a given source rate R and 
block length B, these proofs provide 
bounds on the probability, P, that a 
block will be decoded incorrectly. 

Figure 1 illustrates the kind of re- 
sult now obtainable (25). The figure 
relates to Gaussian channels. For a 
given signal-to-noise ratio S/N, it shows 
bounds on the largest information rate 
R attainable with error probability 
P = 10-4. The dashed curves are 
lower bounds on R, the solid curves 
are upper bounds. A pair of curves 
appears for each of the three values 
2WB = 5, 25, and 101. Even when 
2WB = 101 (that is, when messages 
are encoded into blocks of 101 real 
numbers), about 1.6 times as much 
power (2 decibels) is required as the 
capacity formula (Eq. 3) indicates. 

Given a channel with capacity C and 
a source of rate R < C, the best 
achievable error probability P ap- 
proaches zero as the block length B 
approaches infinity. The manner in 
which P approaches zero is now known 
fairly precisely, especially when R is 
near C. For a certain range of rates, 
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Re,.it : R < C, the error probability 
satisfies the inequalities 

exp{-B[E(R) + 5]} 
P c exp[-BE(R)] (4) 

where E(R) is a known function of 
R and 8 is a term which approaches 
zero as B approaches infinity. At rates 
R below R.rit, P also has exponen- 
tial upper and lower bounds but the 
difference between the best-known ex- 
ponents does not approach zero. These 
bounds on probabilities of error are 
the result of a series of difficult studies 
(26). Recently R. G. Gallager (27) has 
given a simple and elegant treatment. 

When R > C, frequent errors are 
unavoidable. The situation is curious 
because P actually approaches 1 as B 
increases (28). 

Random and Systematic Codes 

In order to achieve the high signal- 
ing rates promised by the coding theo- 
rem and its variants one must use a 
well-designed code. Unfortunately the 
coding theorem does not really tell how 
to construct codes. It says, in effect, 
"The codes exist; now you go find 
them." Turning to the proofs of the 
coding theorem for a clue, one finds 
that the codes used in these proofs are 
based on random processes. 

Figure 2 shows a random construc- 
tion simpler than most random codes. 
In Fig. 2 the problem was to pack 

TO NOISE RATIO 

on the Gaussian channel when, at most, 

circles, without overlap, into a square. 
The packing procedure was a sequence 
of random trials. In each trial a point 
within the square was randomly chosen 
as a possible center of a circle. If the 
circle with that center overlapped none 
of the circles already packed, then the 
new circle was packed. Packing of the 
16 circles shown required a few hun- 
dred trials. 

Figure 2 can be a code for a Gaus- 
sian channel. The coordinates (xl,x9) 
of each center serve as a pair of real 
numbers to be transmitted. The list of 
all 16 pairs is then a block code of 
block length B = 2/(2W) seconds. To 
use the code, messages from the source 
may first be encoded into binary digits 
-say by Huffman's procedure. After- 
ward the 16 possible blocks of four 
binary digits are associated with the 
16 pairs of real numbers. A received 
pair (Zl,Z2) is interpreted as the nearest 
center. By packing spheres one keeps 
the transmitted points far enough apart 
so that the most likely noises cause 
no trouble. 

The encoder for Fig. 2 is basically 
a code book, such as is used by cryp- 
tographers, with 16 entries. Better ran- 
dom codes require much larger code 
books. A random code corresponding 
to the curves 2WB = 101 of Fig. 1 
would be represented by a set of ran- 
dom points in 101-dimensional space. 
If the code signaled at a rate of one 
bit per sample, the code book would 
contain 2101 = 2.5 X 1010 entries. 
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Fig. 2. Random packing. 

What is really needed is a code with 
a systematic mathematical structure, so 
that the code book can be replaced 
by relatively concise rules. In the pack- 
ing problem a concise rule might be 
"all sphere centers have integer coordi- 
nates." This rule adequately describes 
cubic packing without individual list- 

ing of the centers. However, in high- 
dimensional space the cubic point lat- 
tice provides neither dense sphere pack- 
ings (29) nor good codes. 

Parity Checks 

Systematic codes have been designed 
most successfully for digital channels. 
In the usual technique for designing 
codes for binary channels, parity checks 
are used. A parity check is a con- 
straint requiring that the sum of the 

digits in certain positions be an even 
number. A simple example is a code 
based on the use of blocks (xl,x,, 
. . . ,7) of seven binary digits for 
which the three check sums S -- 

xl + X3 + X + X7, S2 = x2 + 

x3 + xf + X7, and S4 = 4 + 
x5 + x6 + x7 must all be even num- 
bers. When this code is used, x3, x,, 

x6, and x, can be four digits of some 

binary message; xI,' x2, and x4 are 
then determined by the parity condi- 
tions. Thus this code can signal at a 
rate of 4/7 bit per digit. This is the 
earliest example of an "error-correcting 
code" (30). The receiver can recon- 
struct the block even when one of the 
seven received digits is incorrect. To 
do so the receiver forms the check 
sums St, S2, and S4 from the re- 
ceived digits. The position of the in- 
correct digit will be the sum of the 

subscripts of the sums Si which are 
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not even numbers (for example, if S2 
and S4 are odd numbers, then x6 is 
incorrect). 

A similar code having m checks cor- 
rects any single error in a block 
2m--1 digits long. It is more dif- 
ficult to design codes to correct larger 
numbers of errors within a block, but 
now several families of these codes are 
available (31). One of the most versa- 
tile codes, the Bose-Chaudhuri-Hoc- 
quenghem code (32), corrects any pat- 
tern of t or fewer errors in a block 
of 2m--1 digits and requires at most 
mt parity-check conditions. For any of 
these codes the encoder is a relatively 
simple device that uses the check con- 
straints to compute digits. The decoder 

performs a more complicated logical 
task; often it requires considerable in- 

genuity to design a simple machine for 

decoding an error-correcting code (33). 
Parity checks are also useful against 

other kinds of noise. Several kinds of 
burst-correcting codes are available (34; 
see also 35). Other codes correct era- 
sures (36) (an "erasure" replaces a 

binary digit by a blank). For a very 
simple example of a code which cor- 
rects bursts of erasures, let blocks be 
12 digits long and let there be four 

parity check sums, x] + x5 + x9, 
X2 + X6 + X10, X3 + X7 + Xl1, 
and X4 + X8 + X12. If a single burst 
of erasures 4 digits or less in length 
occurs, each check sum contains at 
most one erased digit; the receiver can 

recompute the missing digits from the 
check-sum relations. 

Parity checks have also been used 
in "recurrent" codes (35), which do 
not have a block structure. A typical 
example of a recurrent code, by D. W. 

Hagelbarger, has a check sum Sj, = 

x927,-12 + x27-G + X27,+1 for each 

integer k. The digits x2, x4, x6 . . . 

with even subscripts, can be the digits 
of some binary message; the remaining 
digits, X1, xa, x5, . .. are then com- 

puted from the check-sum relations. 
This code corrects bursts which are 

separated by at least 19 correct digits; 
a burst may be any pattern of errors 
contained in a cluster of up to six 
consecutive digits. The decoding is ex- 

tremely simple. To decode message 
digit x27, the decoder first computes 
the check sums S,+3 and Sj,+ from 
the received digits. If both check sums 
are odd numbers, the decoder con- 
eludes that x27 is in error; if at least 
one check sum is an even number, the 
decoder concludes that x27 is correct. 

Onward to Capacity 

It is still not possible to signal with 
a low probability of error at rates 
arbitrarily close to channel capacity 
with the known systematic codes. For 

example, with a code of block-length 
b digits on the binary symmetric chan- 
nel there would be about pb errors in 
each block. One might try to use an 
error-correcting code which corrects 
slightly more than pb errors. However, 
it is now known (37) that if 1/4 p 

3/4, the rate of even the fastest 
error-correcting block code, must ap- 
proach zero as b increases. Thus, to 
approach channel capacity one must 
deliberately allow occasional patterns of 
pb errors to go uncorrected. With one 
exception (38), the known families of 
systematic codes for the binary sym- 
metric channel either have zero rate or 
high probability of error in the limit 
of large block length. 

The approach to channel capacity 
presents the clear challenge of a Mount 
Everest or a 4-minute mile. A solution 
would excite great theoretical interest. 
Its practical importance might be less 
that one at first imagines, both be- 
cause it undoubtedly would require 
complicated codes and also because real 
channels are seldom as simple as theo- 
retical models. To use a real channel 
at rates near its capacity, one must 
have an accurate statistical description 
of the channel noise. Such statistics 
are hard to obtain. When telephone 
circuits were measured for transmis- 
sion of binary digits (39), the errors 
tended to occur in bursts but were 
otherwise so scarce that a large number 
of data had to be collected. Simple 
models (40) succeeded in simulating 
some of the gross features of the data, 
but the true noise is much more com- 

plicated. When the channel noise is 

only partially understood one may pre- 
fer to correct some of the most com- 
mon errors and to forget about achiev- 

ing channel capacity. 

Feedback 

Coding is not always the only ap- 
proach to a problem of communica- 

tion-system design. The cost of coding 
and decoding equipment must be bal- 
anced against the cost of improving 
the channel. For example, instead of 

buying sophisticated coding equipment 
for a Gaussian channel, one might bet- 
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Fig. 3. A two-way channel. 

ter spend the money for increased 
transmitter power or antenna gain. 

Another possibility is to provide a 
"feedback channel" from the receiver 
to the transmitter. In its simplest usage 
a feedback channel permits the re- 
ceiver to ask for retransmission of ques- 
tionable parts of the message. For ex- 
ample, when a parity check block code 
is used on a binary channel, blocks con- 

taining parity check failures could be 
retransmitted. In this way an error- 
correcting code can overcome many 
additional error patterns. This system 
is especially advantageous when the 
noise occurs in bursts of perhaps a 
dozen errors separated by many thou- 
sands of correct digits [as observed in 
sending digital data over telephone cir- 
cuits (41)]. Then a feedback channel 
of very low capacity suffices. 

An extended coding theorem covers 
feedback channels and, even more gen- 
erally, two-way channels, in which mes- 
sages travel in both directions, pos- 
sibly interfering with one another (42). 
An example illustrates some of the 
complications possible in such a theory. 
Suppose the two-way binary channel is 
just a noiseless telegraph wire and bat- 
tery connected in series with a key and 
buzzer at each of two stations, A and 
B, as shown in Fig. 3. The two 
buzzers sound (signifying binary digit 1) 
only when both keys are closed. Opera- 
tor B may close his key permanently 
to receive messages from A, but then 
the signaling rate from B to A is zero. 
If operators B and A both have mes- 
sages to send they might transmit in 
turns, alternately sending one digit and 
closing the key to receive one. How- 
ever, A and B can increase their aver- 
age signaling rates, and still not make 
errors, if they adopt a suitable system 
in which both signal at the same time 
(43). 

When a forward channel of capacity 
C and a feedback channel are both 
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available one might hope to send infor- 
mation in the forward direction faster 
than C bits per second without a high 
probability of error. This is shown to 
be impossible if the forward channel 
is "memoryless" (both the binary sym- 
metric channel and the Gaussian chan- 
nel are "memoryless") (44). Instead, the 
feedback channel simplifies the coding 
and replaces the exponent E(R) in Eq. 
4 by a larger function (45). A simple 
code is now known which uses feed- 
back to signal over the Gaussian chan- 
nel with a low probability of error and 
at a rate as close as desired to the 
channel capacity (46). 

Psychology 

Information theorists and psychol- 
ogists have some interests in common 

just because humans are important 
sources and recipients of messages. 
Shannon's estimate of the information 
rate for English came not from meas- 
urements of the impossibly complicated 
statistical properties of English but, in- 
stead, from an experiment in which a 
human tried to guess letters of a text 
(21). In addition, psychologists have 
tried to use the information measure 
in rating experimental tasks. 

It was hoped that one could measure 
a subject's short-term memory in terms 
of a fixed number of bits, regardless of 
the kind of item to be remembered. 
However, it was found that a typical 
subject, who might remember 9 binary 
digits after reading them once, remem- 
bered 8 decimal digits (25 bits), 7 
English letters (33 bits), or 5 mono- 
syllabic words (50 bits) (47). 

In other experiments, rates at which 
humans process information were meas- 
ured. In such studies the subject is a 
kind of channel; his instructions are 
the messages to be transmitted, and his 
performance is what is received. Vari- 

ous tasks were studied-sight reading 
at the piano, typing, tapping targets, 
marking squares, reading word lists- 
in an attempt to achieve as high a 
signaling rate as possible (hence, to 
realize the full "capacity of the human 
channel") (48). The best rates obtained 
were about 40 to 50 bits per second. 
These results are hard to interpret, but 
they do make one wonder what pos- 
sible use a television viewer makes of 
the millions of bits of information he 
receives each second. 

Psychologists' interest in information 
theory reached a peak about 10 years 
ago (49). Nowadays its limitations for 
psychology are better understood, and 
interest has waned somewhat. The in- 
formation measure is still used as a 
convenient statistic, like a mean or a 
variance, but it is interpreted with more 
caution (50). 

Conclusion 

In this article I portrayed that aspect 
of modern information theory which 
relates to explicit coding systems in- 
tended to signal at high rates. I omit 
other, more theoretical parts of the 
subject. Information theory is a very 
active area of investigation in the 
U.S.S.R., but there the emphasis is on 
mathematical results (51), and these I 
had to omit. 

As an engineering subject, informa- 
tion theory has flourished for 18 years 
because of the promise it gave of im- 
proved communication systems. The re- 
sults are still almost exclusively on pa- 
per. Nevertheless, the paper work has 
come closer to practicalities. Experi- 
mental systems which use some of the 
new codes have been tested, and some 
coders and decoders are now com- 
mercially available. They may be in 
widespread use in a few years. Mean- 
while, a page count in the journals de- 
voted to information theory shows that 
the field is still growing. 
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The burghers of the posh Chicago 
suburb of South Barrington last week 
forced the removal of their manicured 
acres from the small list of finalists 
in the great accelerator competition, 
charging, among other things, that an 
influx of scientists would "disturb the 
moral fiber of the community." 

The residents, whose neighborhood 
was volunteered by the Governor of 
Illinois, did not specify the present 
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condition of the fiber or the direction 
in which it might be disturbed. But out- 
side of this admirably perverse refusal 
to trade rustic charm for a $375-million 
laboratory, there was little strong re- 
action to the announcement that, from 
85 proposals, covering some 150 tracts 
in 43 states, an evaluation committee of 
the National Academy of Sciences had 
selected, for final consideration, six 
sites (or, depending on how you count, 
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seven, since South Barrington was listed 

along with an alternate site in the 
Chicago area.) These were, Ann Arbor, 
Michigan; the Brookhaven National 
Laboratory, Upton, Long Island, N.Y.; 
Denver, Colorado; Madison, Wisconsin; 
the Sierra foothills, near Sacramento, 
California; and South Barrington, or 
Weston, near Chicago. 

The proximity of the finalists to 
major northern universities or research 
centers inspired senators Sparkman, of 
Alabama, and Russell, of Georgia, to 

scriptural sarcasm, with Sparkman de- 
claring, "For unto every one that hath 
shall be given, and he shall have abun- 
dance ... ," and Russell concluding, 
"But from him that hath not shall be 
taken away even that which he hath." 
But though they were joined by Sym- 
ington, of Missouri, and Mansfield, of 
Montana, in lamenting the geographic 
distribution of the finalists, the senators 
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