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Drumlin Formation: A Rheological Model 

Abstract. Drumlins are formed in a layer of boulder clay separating a glacier 
from certain types of terrain. Under certain conditions the large particles in the 
clay form a dilatant system. When flow in the separating layer is interrupted, 
part of the layer packs into an obstruction and the rest of the material flows 
around this obstruction, giving it a streamlined form. 

Certain previously glaciated areas are 
characterized by groups of low, smooth 
hills called drumlins. That the drumlin 
has been shaped by something flowing 
past it is apparent from the external form 
and from the fact that the planform 
shows a shape that can be described by 
an equation for a streamlined body (1). 
The basic problems concerning drumlin 
formation are the origin of the material 
and the nature of the shaping mechan- 
ism. Existing theories, which have been 
reviewed at some length (2), tend to fall 
into two groups maintaining that: (i) 
drumlin material was deposited from 
debris carried by the glacier and then 

shaped by the flowing glacier, or (ii) 
the material is that of the terrain, shaped 
by glacial action. The mechanism that I 
suggest incorporates a little of each 
theory. 

The relative scarcity of drumlin forms 

suggests that the conditions necessary 
for their formation were rigorous and 
infrequent. I propose that the condi- 
tions were these: 

1) The glacier-terrain relation was 
such that a relatively thin mobile layer 
of material separated the moving glacier 
from the terrain. The thickness of this 

layer, which acted like a film of lubri- 
cant, was about 1 to 5 percent of the 
thickness of the glacier. 

2) The lubricating layer was com- 
posed of a concentrated dispersion of 
boulders in a dense clay-water system 
-the material usually called boulder 
clay or till. 

The boulder-clay layer flowed with 
the glacier, and if the proportion of 
boulders was right the material was di- 
latant. A dilatant material expands when 
deformed, and when fully expanded 
flows fairly easily; but it is resistant until 
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fully expanded. When a natural dilatant 
material is at rest the particles are in a 
tight random packing and this packing 
must be disturbed before flow can oc- 
cur. Since the static packing is a tight 
packing, any adjustment must result in 
expansion. The mechanism of dilatancy 
has been investigated by Andrade and 
Fox (3), and the relevance of dilatancy 
to geology has been considered by 
Mead (4) and Boswell (5). 

The flowing layer of boulder clay 
goes on flowing unless disturbed in 
some way. At points at which the flow 
is interrupted the expanded dilatant sys- 
tem tends to form a local packing; once 
it has packed it is stable, and the flow 

adjusts by flowing around the resultant 
obstruction. A bedrock knob would 
cause such an interruption in flow, and 
the boulder clay would tend to pack at 
the lee side of the obstruction; thus 
the eventual drumlin has a rock embed- 
ded near its upstream face. The clay 
layer is stable in either the static, tightly 
packed form or the flowing, expanded 
form. The great pressure exerted by the 
glacier causes the system to favor the 
condensed form, so that packing tends 
to occur whenever it can, whenever the 
flow stress drops below a critical value. 

Shaping of the drumlin is aided by 
the rheological complexity of the boul- 
der clay. In addition to the clay being 
dilatant because of the dispersion of 
large particles, the peculiar properties 
of clay cause the medium in which the 
large particles are dispersed to be thix- 
otropic: an increase in stress causes re- 
duction in viscosity (5). The clay ma- 
terial tends to flow more easily in the 
vicinity of a local packing than else- 
where in the flow, because of high local 
stresses caused in the flow as it adjusts 

its movement around the obstruction. 
The clay part of the system, flowing 
more easily under these circumstances, 
facilitates formation of a smooth shape 
that causes minimum disturbance in the 
flowing layer. Certain shapes permit 
streamline flow and the drumlin is 
shaped accordingly. 

A polar equation of the form r = cos 
nO has been successfully used (1) to 
describe planforms; r and 0 are vari- 
ables and n is a dimensionless number 
expressing the elongation of the lemnis- 
cate loop that the equation generates. 
Reed, Galvin, and Miller (7) described 
the shape of drumlins by using the 
equation for an ellipsoid; this gives a 
three-dimensional description, but 
Chorley's two-dimensional description is 
preferable because it not only describes 
the shape of the drumlin but also indi- 
cates its mode of formation. The Chor- 
ley method also allows drumlins to be 
classified by use of the single value n 
in the equation r = cos n0. 

Drumlins may be finally shaped by 
the clay flow or the glacier; the shaping 
agency ;is probably the clay flow rather 
than the ice itself. Ice of the glacier 
appears to be too potent an abrasive 
agency to have left such precisely shaped 
forms in a plastic material such as 
boulder clay. The glacier is an efficient 
eroder of hard rocks, and it seems un- 
likely that a heap of boulder clay could 
exert enough resistance to require for- 
mation of a streamlined shape. In fact 
the shear strengths of ice and boulder 
clay are very similar (5), and it may be 
that subsequent ice cover eroded the 
deposit. This situation could arise if the 
clay layer were not continuous. 

If drumlins are formed beneath a lay- 
er of boulder clay, a mechanism must 
be devised by which they can become 

exposed and yet retain their character- 
istic shape. This could occur because of 
the wide difference in properties be- 
tween flowing and static boulder clay. 
The packed and shaped forms are tight- 
ly packed and very stable, and their sur- 
faces represent the interface between 
the flowing and static parts of the sys- 
tem. When the glacier melts, the rela- 
tively plastic mobile layer is dis- 
persed completely, but the streamlined 
molded forms remain. 

Alternatively, if the boulder clay lay- 
er is discontinuous and if the shaping 
is done by subsequent direct glacial ac- 
tion, the glacier will expose the drum- 
lins when it melts. 
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Mechanism of Lunar Polarization 

Abstract. A theoretical model to ex- 
plain the negative polarization of moon- 
light at small lunar phase angles is de- 
veloped. The model is based on the 
polarization of light in the diffraction 
region bordering the geometric shadow 
of an opaque dielectric obstacle. 

The polarization of moonlight as a 
function of lunar phase angle 0 (earth- 
moon-observer angle) has been studied 
by many workers (1, 2). Surfaces have 
been made of various powdery sub- 
stances which simulate the polarization 
behavior of the lunar surface (1-3). A 
typical polarization curve for the lunar 
disk is shown in Fig. 1. The sign con- 
vention for polarization by reflection as- 
signs a positive polarization to light 
whose stronger component is polarized 
with its E-vector perpendicular to the 

plane of incidence. While the positive 
polarization at large phase angles is 
characteristic of reflection from any di- 
electric (as in Rayleigh scattering, for 
example), the mechanism which gener- 
ates the negative polarization has not 
been understood. I now suggest a mech- 
anism which explains the origin and 
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Fig. 1. The polarization P =_ (I -ll)/ 
(1/ + 11) of moonlight as a function of 
lunar phase angle. The solid circles are 
results for positive phase angles, and the 
open circles for negative phase angles 
(after Lyot, 9). I _ and ll are the in- 
tensities of light polarized with their E- 
vectors respectively perpendicular and 
parallel to the plane of incidence. 
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magnitude of this negative polarization. 
The strong increase in the brightness 

of the lunar surface for small phase 
angles is believed due to the effect of 
shadow (4). When a distant object il- 
luminated by a point source is viewed 
from the direction of the source, all 
visible regions of the object are also 
visible to the point source, hence are 
illuminated. No shadow is visible. 
Viewed from some other direction, 
some observable regions are in shadow, 
and the mean brightness of the surface 
will be correspondingly reduced. Re- 
cent measurements by van Diggelen 
(5) have shown that the lunar surface 

brightness increases very rapidly with 

decreasing phase angles even for phase 
angles as small as 1? to 2?. It seems 
natural to search for an explanation of 
the negative polarization, which also in- 
creases rapidly at very small phase 
angles, by the same shadow mechanism. 

Let us examine the shadow problem 
in more detail. Consider the problem 
of a square opaque object mounted 
above a diffusing screen, illuminated at 
normal incidence from above by an 
unpolarized source (Fig. 2). Observer 
N, observing the screen at normal in- 
cidence, sees no shadow. Observer O, 
observing at oblique incidence, sees into 
the shadow region and sees part of the 
brightly illuminated region obscured. 
Well outside the geometric shadow re- 
gion, the illumination falling on the 
screen is unpolarized. Well inside the 
region of geometric shadow, the light 
intensity on the screen is negligible. In 
the diffraction region, however, the light 
can be polarized by diffraction. If so, 
the integrated light from the screen ar- 

riving at O might be partially polarized. 
Observer N, from the symmetry of his 
location, must observe no net polari- 
zation. 

The light seen by O may have been 
polarized by diffraction either in travel- 
ing to the diffusing screen or in return- 
ing to O. Polarization by diffraction 
simultaneously in both paths is a higher 
order effect. Thus, the polarization seen 
by O is the same as the polarization of 
the light falling on the screen in the 
area of the screen directly observable 
by geometric optics to the observer at 
O, multiplied by a factor of 2 to account 
for the light polarized by diffraction in 
returning to O. It is necessary then only 
to calculate the polarization of the flux 
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Fig. 2. The geometry of the problem of 
ideal shadow polarization. The shadow 
region and the geometric field of view of 
the two observers are shown, and the 
dominant polarizations in the diffraction 
regions indicated by small arrows. 

be replaced by a perfectly conducting 
halfplane. The solution to this problem, 
first given by Sommerfeld, can be read- 
ily calculated in terms of equations 
given in Born and Wolf (6) and Fresnel 

integral tables. Let ,, be original un- 

polarized incident flux, and III and 
I1 be the intensity of the light incident 
on the diffraction, screened polarized 
parallel and perpendicular respectively, 
to the plane of incidence (but respec- 
tively perpendicular and parallel to the 
edge of the half-plane). The polariza- 
tion P(x) at the screen is given by 

x(1) P(x) - = 
I 

( 8 2r) A(x) .... (1) 

where x is the distance from the geo- 
metric shadow line, r is the obstacle- 
screen distance, and X is the wavelength 
of the light. 

A(x) is plotted in Fig. 3, with x 
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Fig. 3. The function A(x) in the vicinity 
of the geometric shadow edge. The dotted 
line shows the monatonic part of A(x) in 
the region of full illumination. 
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