
power was beyond the spectrometer 
bandwidth, this must be considered as a 
lower bound. The curve was obtained 
by scaling the area under each spectro- 
gram. The --r marked on these curves 
is the result of both calculation and 
measurement; the agreement between 
the two is excellent. 

All of the runs of the experiment 
were averaged together to produce the 
average Mars spectrogram shown in 
Fig. 9. Because so many runs have been 
averaged, the -+? interval has been re- 
duced to a very small value. The asym- 
metry in this spectrogram may be ex- 
plained in two ways. (i) The surface 
may have a slightly preferred slope, as 
sandy places on Earth have when winds 
from a preferred direction ruffle the 
surface. (ii) The spectrogram is the 
result of the integration of hundreds of 
hours of signal plus noise and the sub- 
traction of an equally long (but inter- 
leaved) integration of noise only. The 
asymmetry of the spectrogram may be 
the result of some residual instability of 
that process. 
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Abstract. The theory of the rotation 
of. the planet Mercury is developed in 
terms of the motion of a rigid system 
in an inverse-square field. It is possible 
for Mercury to rotate with a period ex- 
actly two-thirds of the period of revo- 
lution; there is a libration with a period 
of 25 years. 

By radar, Pettengill and Dyce (1) 
have observed that the rotation of the 

planet Mercury is direct with a sidereal 

period of 59 ? 5 days. McGovern et al. 
(2) have refined this value to 58.4 ?+ 

0.4. Mercury's period of revolution is 
87.97 days; for synchronous rotation 
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retical implications. The role of tidal 
torque and tidal friction in bringing 
Mercury to this period has been calcu- 
lated by Peale and Gold (3), and by 
Goldreich (4). 

The torque exerted by the sun on 
Mercury arises from a term in the 
potential which varies inversely with the 
cube of the distance. For an eccen- 
tricity of 0.2, the variation between 
perihelion and aphelion in this term 
is a factor of 3.4. Hence, as pointed 
out by Peale and Gold (3) and by 
Goldreich (4), the rotation of Mer- 
cury tends to be controlled by the situ- 
ation at perihelion; it tends to rotate 
so as to match the rotation velocity 
with the instantaneous orbital angular 
velocity at perihelion or near it. 

But since the period demanded by 
this condition is nearly two-thirds of 
the orbital period, it is reasonable to 
ask whether a resonance lock is pos- 
sible at exactly two-thirds of the orbital 
period, or 58.65 days. This seems plaus- 
ible because the second-harmonic term 
in the planetary potential will have fore- 
and-aft symmetry; up to the second 
degree, the two ends of the axis of 
minimum moment of inertia behave in 
the same way in the gravitational field 
of the sun. Colombo (5) has already 
surmised that the lock is possible; our 
own work was begun before we were 
aware of his. 

If A < B < C are the principal mo- 
ments of inertia at time t, and if C is 
taken perpendicular to the orbit plane, 
then the potential energy of the planet 
Mercury is, by MacCullagh's formula 

-K M K (A + B - C-31) v-= - (1) r 2r3 

where K is the gravitational parameter, 
M is the mass of Mercury, and I is the 
moment of inertia around the radius 
vector r 

I = A cos2 0 + B sin 0 (2) 
where ( is the angular displacement of 
the principal axis, A, in the counter- 
clockwise direction as seen from north, 
from the position vector, r. 

The Lagrangian of Mercury's motion 
is 

L M 1/ (dFr) 2 2 df) j 

+ C( + 2df2 
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The instantaneous mption of the 
planet Mercury is described by 

r = a(1 l-e2)/(l + e cos f) (5) 

where a is the semimajor axis and e 
the eccentricity of the orbit. From the 
law of invariant areal velocity, the or- 
bital angular momentum, h, is 
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where X = (B - A) C. 
In a circular orbit (e = 0) and in 

the case of a body with dynamic sym- 
metry and the axis of symmetry per- 
pendicular to the plane of the orbit 
(A 0), Eq. 7 can be integrated by 
quadratures. Hence for small e and A, 
one can find an approximate expression 
for the solution of this equation, work- 
ing from the Poincare small-parameter 
method or the Krylov-Bogolyubov 
averaging method. Since e = 0 and 
X = 0 represents a nonintegrable case, 
only qualitative investigation and nu- 
merical analysis of Eq. 7 appear to be 
readily obtainable. 

By repeated numerical integration of 

Eq. 7 over a period of 100 years we 
find that for A - 0.00005 (that is, some- 
what less distortion than the moon) 
Mercury will lock at an average period 
of 58.65. The instantaneous period os- 
cillates with an amplitude of the order 
of 0.008 days and a period of 25 years. 
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