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Hard-Sphere Flu 

A simple molecular model for dense fluids illustrate 
transition to the solid ph 

H. L. Fi 

The purpose of this article is to pro- 
vide direct insight into the physical be- 
havior of dense supercritical fluids com- 
posed of roughly spherical, and pref- 
erably monoatomic, molecules such as 
those of the inert gases. Specifically, I 
discuss the central equilibrium proper- 
ty, the equation of state relating pres- 
sure, density, and temperature of the 
fluid, and the simplest transport coef- 
ficient, the self-diffusion coefficient. I 

dispense with the usual mathematical 

apparatus of statistical mechanics of 
fluids but ask readers to recall the ele- 
ments of the kinetic theory of gases 
and certain facts of thermodynamics 
(1). 

If a fluid is sufficiently dilute, it can 
be described according to a simple 
physical model, the ideal gas. Referring 
to Fig. 1, a diagram of the intermolecu- 
lar potential energy between two spheri- 
cal molecules as a function of the dis- 
tance r between their centers, we note 
that real molecules possess an essential- 
ly impenetrable volume called the 
"hard-core" volume, characterized by 
the hard-core diameter, a. The ideal 
gas is approximated by a real fluid when 
the fluid becomes so attenuated that the 
"hard core volume" of a molecule, 
which is proportional to a3, can be 
considered negligibly small in compari- 
son to the volume available to the 
center of a molecule (that is, the vol- 
ume per molecule), whose reciprocal is 
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lar potential energy diagram, in Fig. 1, 
we note that at temperatures high 
enough" (say corresponding to the en- 
ergy drawn as a dashed line in Fig. 1), 

iid so that the average kinetic energy of a 
fluid molecule is much greater than 
the minimum value of the intermolecu- 

os a lar potential energy, the contribution 
to this potential made by the hard core 

~ase. ~ is all-important in determining the prop- 
erties of the fluid. At very high densi- 

risch ties, furthermore, the soft, primarily 
attractive (nonhard-core) part of the 
potential can be thought of as a 
smoothed average potential not greatly 
affecting the properties of the fluid. 

.The ideal-gas Thus we arrive at the hard-sphere 
illy uncorrelated model (3) in which only the hard-core 
e. Actually there repulsion is retained in the intermolecu- 
gases, depending lar potential energy. Hard-sphere mole- 
e degree of at- cules interact only when they collide 
:mits one to neg- elastically, that is, when both energy 
, sections to mu- and momentum are conserved in the 
r pair of mole- collision. Machine computations, either 
ith the square of directly of the molecular dynamics (4) 
of the macro- or by Monte Carlo simulation (5) in 

is. These are the which a finite but large number (102 to 
Boltzmann gas, 103) of such hard spheres is used, pro- 

:ase the equation vide us with "experimental" data with 
,al gas," which to compare theory. I will not 

describe these interesting computations 
(1) but refer readers to reference (4). 

ssure, T the ab- Figure 2 shows the result of such a 
d k Boltzmann's computation of the equation of state 

made by Alder and Wainwright (6) 
for a two-dimensional version of a 
fluid composed of hard spherical discs 
of diameter a. The ordinate in Fig. 2 
is the product of the pressure p of the 

)ccupied by the N hard discs and Ao, their area at 
luid is often not closest packing, divided by NkT; the 
ve seek a simpli- abscissa is the ratio of the actual area 
h applies when A (the two-dimensional analog of the 
ideal gas limit volume) occupied by the discs to Ao. 

tem must, like a The graph is composed of two branches, 
f existing in two a high-pressure (left) and a low- 
(i) a solid phase pressure (right) branch, connected by 
order, in which an S-shaped (van der Waals) loop. The 
stically localized low-pressure branch, as one can verify 
riodic space lat- directly from the computation, is com- 
iase in which the posed of states of aggregation in which 
aitial correlation the molecular spatial correlation ex- 
ich shorter than tends over distances of the order of the 
)f the fluid sam- macroscopic size of the sample. The 
the intermolecu- system is essentially a thermally per- 
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turbed space lattice that is character- 
istic of solids. The high-pressure, or 
fluid, branch is one in which such long- 
range spatial correlations have van- 
ished. The loop is the transition region 
which presumably would deform as 
N, V increases without limit, with 

p = N/V fixed to the horizontal line 
in Fig. 2, along which solid and fluid 
can coexist. Thus this system is capable 
of existing in two different states of 
aggregation (solid and fluid) and can 
exhibit a well-defined phase transition. 
Similar results are found with the 
three-dimensional hard-sphere system. 

The solid branch of the machine- 

computed equation of state is ade- 
quately described by an imperfect solid 
equation of state (4). The basic con- 

cept underlying the derivation of this 

equation is that any hard sphere can 
be thought of as being essentially lo- 
calized to a cell volume determined by 
its neighbors. We need thus concern 
ourselves primarily with the fluid 
branch. 

The Pressure 

Consider a container of our hard- 
sphere fluid maintained at a temper- 
ature T. The pressure of the fluid is 
the normal stress exerted against the 
macroscopic plane (rigid) wall of the 
container, that is, the volume deriva- 
tive of the mechanical reversible work 
with the dimensions of force per unit 
area. Recollecting the simple kinetic- 
theory argument (7), we can write 
the pressure as the product of the aver- 
age change in flux of molecular mo- 
mentum at the wall, kT, and the densi- 
ty of molecules adjacent to the wall, 
pw = pw(p): 

p = kTpw(p). (2) 

In particular for an ideal gas, in which 
there is no spatial correlation, this den- 
sity pw is the uniform bulk density p 
(see Eq. 1). 

For the gas of hard spheres this is 
no longer true, as can be seen from the 
so-called virial equation of state (8): 

- l1 2/37ra3 pg''()(a;p), (3) pkT 
- 

where g(h) (a;p) is the radial distribu- 
tion function, g(h) (r;p), evaluated at 
r = a corresponding to contact between 
two spheres. The entity pg(h) (r;') 
47r2dr is the conditional probability 
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Fig. 1. Intermolecular potential energy 
plotted against distance between the cen- 
ters of the molecules. The dashed line 
corresponds to the hard-sphere potential 
p = oo for r < a and po = 0 for r > a. 

that another molecular center can be 
found within a spherical shell of radius 
r and thickness dr, of volume dv = 

47rr2dr, from the center of a given fixed 
molecule. Thus the expected density of 
hard spheres in contact, that is, whose 
centers are separated by the distance a, 
is 

n(a;p) pg(h) (a;p) = p-1 /2/3 ra ( 4) 

The plausibility of the virial equation 
of state is made evident by the follow- 

ing device: Divide our container by a 
flat reflecting wall which is impermeable 
only to the centers of our hard spheres, 
as drawn in Fig. 3. This does not affect 
the density, pressure, or the bulk spa- 
tial correlations away from this wall. 
Now consider the average change of 
momentum flux across this wall, that is, 
the pressure p. This pressure consists of 
(i) the ideal gas contribution of the 
centers, pkT, augmented by (ii) the 

average momentum flux transferred by 
molecules on the left of the wall but 

protruding through it to molecules with 
centers to the right-hand side of the 
wall. Except for a numerical factor of 
47/ 3 this is proportional to the molecu- 
lar cross section, 7ra2, times the ef- 
fective length a in which the center of 
a molecule on the left can lie, times 
the mean momentum change in col- 
lision of a pair kT, times the effective 
density of pairs in contact 1/2pn(a;p), 
2/3rra3kT pn(a;p). Adding these two 
contributions to p we recover Eq. 3. 

The equation of state given by Eq. 3 
is affected by spatial correlation through 
g(h) (a;p), the contact radial distri- 
bution function. Following the "scaled 
particle theory" (9) we can obtain re- 
liable estimates of g(h) (a;p) by focus- 
ing attention on fluctuations in our fluid 
which produce a spherical cavity. By a 
spherical cavity of radius r I mean a 

spherical region of radius r devoid of 
hard-sphere centers as illustrated in 

Fig. 4A. 
Let po(r) be the probability of find- 

ing a spherical cavity of radius at least 
r centered at an arbitrary point of our 
fluid. When r - a/2 we can calculate 

po(r) exactly; po(r) is equal to 1 minus 
the probability of occupation. For r < 
a/2, occupation can occur by at most 
a single hard-sphere center; thus p, = 
1 - 4/3 irr3p, since p is the density of 

single molecular centers and the vol- 
ume of the cavity is 4/37rr3. Further- 
more one can readily show that the first 
two derivatives of po(r) with respect to 
r are continuous at r = a/2. More 

generally, we know from thermody- 
namic fluctuation theory that the prob- 
ability of the spontaneous occurrence 
of some specified situation equals the 

negative exponential of the reversible 
work (Helmholtz free-energy change) 
necessary to create the situation divided 

by kT (10). Thus in our case 

po(r) = exp [ - W(r;p)/kT] (5) 

where W(r;p) is the reversible work 

performed in forming the spherical 
cavity. 

The probability that there will be a 

spherical cavity whose radius lies be- 
tween r and r + dr is - (dpo/dr)dr and 
can be written as a product of two fac- 
tors: the probability that there will be 
a cavity of radius at least r, and the 
conditional probability that there will be 
a center of some hard sphere between r 
and r + dr when there is none inside 
the sphere of radius r. Thus 

dp. - d- dr= po(r) pG(r)47rrdr (6) dr 

where the above-mentioned conditional 
probability is factored into the condi- 
tional probability density pG(r) times 
the spherical volume element dv = 
47rr2dr. The density pG(r;p) is the 
average density of hard-sphere centers 
in contact with the boundary of our 

spherical cavity. Taking the logarithm 
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of both sides of Eq. 5, differentiating 
with respect to r, and comparing the 
result with Eq. 6, one finds that 

dW(r) = kTpG(r)47rradr = 
- kTd In po(r), (7) 

which relates the differential of W(r) 
and po(r) to G(r). Since po(r) = 1 - 

47rr3p/3 for r < a/2, and po(r) is con- 
tinuous and possesses two continuous 
derivatives at r = a/2, we find from the 
second equality in Eq. 7 that 

G(r) = 1 

1 ____ 
3 

d In po (r)/47rrap dr (8a) 

when r < a/2, and when r = a/2 
Fig. 3. Container of hard spheres separated by a reflecting wall (solid line) impermeable 
to hard-sphere centers. 

G(1 a) - 7ra3 
6 

- [d In po(r)/47rrp dr]r=a/2, (8b) 

and 

/dG\ a _ 2p 
i dr r=a/2 - Tra3p ) (8c) 1-- 6 

The physical significance of G(r) 
is evident from Fig. 4B, which shows a 
cavity of radius r = a. Note that the 
effect on the remainder of the fluid is 

precisely that of a fixed hard sphere, as 

A/Ao 

Fig. 2. The equation of state for a fluid 
composed of 870 hard discs in the phase- 
transition region. Ao is the area of the 
system at close packing; triangles represent 
points for 72 particles; vertical bars in- 
dicate the range of fluctuation in the ma- 
chine computed results. 
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we readily see in Fig. 4B, where we 
can imagine we have filled the cavity 
with such a sphere (indicated by the 

shading). This implies that 

G(a) = g") (a;p). (9) 

This equivalence of the G and g(h) is 
true only for this one value of r, r = a. 

To obtain further insight into the 

G(r) we reexamine dW(r). This dif- 
ferential of the reversible work of cavity 
formation consists of a contribution 

proportional to the spherical cavity vol- 
ume element dv = 47rr2dr, with coeffi- 
cient the pressure p, and another con- 
tribution proportional to the surface 
area element of our spherical cavity, 
dS = 8rrr dr: 

dW(r) = p dv + a(r)dS. 

the first few terms. The scaled particle 
theory reveals that the development in 
the curvature shown in Eq. 12 applies 
to molecular dimensions with only a 
small remainder. Using Eq. 12 in Eq. 
11 we have an explicit, albeit approxi- 
mate, G(r) if we can evaluate as func- 
tions of p the three coefficients p, 
ao(p) and S(p). The pressure can be 

(10) 

In Eq. 10, (r(r) is the surface tension 
of hard spheres against a rigid curved 
wall of mean curvature 2/r, since a 

cavity acts like a curved rigid wall (see 
Fig. 4A). Thus dividing both sides of 

Eq. 10 by kTp dv and using the first 

equality in Eq. 7, we obtain 

G(r) - p + 2o(r) 
pkT pkTr ' (11) 

Thus G(r) is expressed in terms of en- 
tities familiar from thermodynamics. 

One knows from conventional ther- 
modynamics that the surface tension at 
a curved interface is not precisely the 
constant surface tension ao of the flat 
interface but is a function of the curva- 
ture, 2/r, which can be expanded in a 

power series in the curvature (11): 

(r) - o() - [ - 2 (p)a ] , (12) 

since it generally suffices to retain only 

B 

Fig. 4. (A) A spherical cavity of radius r 
in a hard-sphere fluid. (B) A spherical cav- 
ity of radius a (the diameter of the spheri- 
cal shaded region is a). 
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eliminated by taking the limit as r -> oo 
of Eq. 11 [with u(r) given by Eq. 12] 
and the virial equation of state, Eq. 3, 
together with Eq. 9: 

G(oo) -- P = 1 + 2/3rpa3g( (a;p) = 
pkT 

1 + 23 rpa3G(a). (13) 

Since pG(oo) is just the density of hard 
spheres adjacent to a flat wall, pw(p), 
we see that the first equality in Eq. 13 
is just our old equation (Eq. 2). We 
can solve for the remaining coefficients 
by using our exact equations (Eq. 8), 
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thus obtaining the approximate hard- 

sphere equation of state 

pkT (I +y+y2)/(1--y), (14) pkT 
- 

where y = 7pa3/ 6, and the equation for 
the surface tension 

( kTra'P) [I +-y:3 . (15) 

We compare Eq. 14 with the results 
of molecular dynamics calculations, 
"experiment" so to speak, of Alder and 
Wainwright (4) in Fig. 5. The agree- 
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Fig. 5. Comparison of theoretical equations of state with the machine computations 
Alder and Wainwright. Line 6 is freely drawn through the machine-computed points f 
the beginning of the "solid" branch and has no theoretical justification. The data i 
curves 2 and 3 are taken from (14). 
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ment (to a few percent) over the whole 
range of fluid densities is gratifying. Also 
shown in Fig. 5, for comparison, are the 
predicted equations of state obtained 
from the older Kirkwood (12), Born- 
Green (13), and "free volume" (3, 14) 
theories of liquids. When Eqs. 14 and 
15 are expanded in powers of p, the 
first few terms are identical with the 
known exact result, and the next few 
are in error only by small percentages. 
The approximate equation of state (Eq. 
14) also results from a systematically 
improvable theory, formulated by Per- 
cus and Yevick (15), which is also 
capable of describing the beginning of 
the low-pressure (solid) isotherm. The 
principal shortcoming of Eq. 14 is that 
it does not give an indication of the 

phase transition "revealed" by machine 

computations at densities p less than 
that of the densest regular close packing 
(as in a face-centered cubic or hexag- 
onal close-packed lattice), which in 
turn is smaller than the density where 
Eq. 14 diverges (y = 1). The mathe- 
matical description of the phase transi- 
tion is the central unsolved problem in 
this field of statistical mechanics. 
Through Eq. 14 we have an approx- 
imate expression for n(a;p) which re- 
duces to p in the Boltzmann limit 

(pa3 -> 0). 

Mean Free Path and the 

Self-Diffusion Coefficient 

Transport coefficients, such as the 
self-diffusion coefficient D, are the most 

elementary topic in irreversible statis- 
tical mechanics because, by their defini- 
tion, we must determine them under 
conditions of vanishingly small gradients 
in mass or by a molecular property such 
as the momentum. Thus self-diffusion, 
characterizing mass transport, in our 

hard-sphere fluid can be studied by 
painting a few hard spheres to dis- 

tinguish them from the others. Let N 
be the mean density of painted hard 

spheres. In a volume element, Av, small 

compared to the macroscopic volume 
of the fluid sample but large enough to 
contain many molecules, the local den- 

sity N(Av) may differ from the mean 

by the excess AN = N(Av) - N. If J 

.2 is the flux of painted molecules and 
dAN/dx the gradient of the number 

density excess of painted spheres, then 

of D is by definition 
tr~r LVU 

For 
D =- J/(dAN/dx) (16) 
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in the limit as dAN/dx vanishes. Such 
a small gradient as dAN/dx can arise 
as a result of a local fluctuation in the 
number density of painted hard spheres 
even in a thermostatted (that is, equili- 
brated) system. One employs such sys- 
tems experimentally in studying D in 
real fluids by means of the spin-echo 
technique where the nuclear spin on a 
molecule is used to "paint" a few mol- 
ecules so that they can be distinguished. 

We focus attention on D rather than 
on the property-transport coefficients 
such as those of viscosity (character- 
izing momentum transport) or heat con- 
ductivity, because at high densities 
properties, unlike mass, can be trans- 
ported by two different mechanisms: 

1) Free motion of the molecules be- 
tween collisions; this motion is deter- 
mined by the mean free path, X(p), the 
mean distance traversed by a molecule 
between two successive collisions. This 
is the kinetic contribution. 

2) Instantaneous collisional transfer 
of a property such as the momentum 
over the diameter of a hard sphere. 
More generally, this is the potential 
contribution whose transfer is mediated 
through the intermolecular potential. 

Obviously only the first mechanism 
can operate in mass transfer, no matter 
how dense the system. This is a con- 
siderable simplification. 

Consider a fluctuation producing 
painted hard-sphere density excesses 
AN(x+uA) at a volume element at 
x + uA and AN(x) at x separated by 
a mean free path X(p) as shown in Fig. 
6. The flux of painted hard spheres, 
moving on the average with the mean 
thermal speed c in the thermostatted 
system, is 

J c[AN(x) - AN(xL+uX)i- 

- ux(p)c dAN/dx (17) 
where u is a pure number obtained from 
averaging only all possible velocities 
in a binary collision and is known in 
the attentuated, Boltzmann limit of the 
hard-sphere gas to be 3rr/8 /2 (8, 
p. 525). Thus, comparing Eq. 17 with 
Eq. 16, we have 

3rr D - 8-2 X(p)c. (18) 

The mean thermal speed is a function 
of the temperature and the hard-sphere 
molecular mass m and is given by 
elementary kinetic theory (2, p. 134) 
as 

c= 2(kT/m7r) '. (19) 
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Fig. 6. Schematic diagram illustrating self-diffusion of hard spheres between volume 
elements separated by a mean free path. 

Since the mechanism of mass transfer 
is the same at all densities, the only 
density variation in this formula can 
come from variation of A(p). 

By definition (2, p. 51) the mean 
free path is 

c 
X(p) = (20) 

(p) 

where v(p) is the frequency of binary 
collisions. It is easier to compute first 
vf(p), the frequency of binary collisions 
with a fixed hard sphere. The number 
of collisions suffered by such a hard 
sphere in a time interval dt is given 
by the number of hard spheres colliding 
with the fixed sphere (that is, having 
a separation a between their centers). 
These must lie within a cylinder of 
cross section rra2 and mean length c dt, 
that is, 

vf(p)dt -= ra2 * c dt * n(a;p) (21) 

where n(a;p) is the effective density 
given by Eq. 4. To obtain the collision 
frequency v(p), we must multiply vf(p) 
by V2 to account for the relative mo- 
tion of the colliding spheres, as is dis- 
cussed in elementary kinetic theory (2, 
p. 51), so that (compare Eq. 4) 

v(p) _- v/2ra 2* ?c n(a;p) = 

f2 rra'2 cC .(p/pkT - l)/2/3 ra. (22) 

Substituting Eq. 22 into Eq. 20 and the 
resulting expression into Eq. 18 one 
finds with c given by Eq. 19 that 

D 
a 

(kT)/ (kT -1) (23) 

the well-known Enskog result (8, p. 
634 ff.; 16). This equation reduces to 

the correct Boltzmann limit and agrees 
within a few percent with machine cal- 
culations of D over almost the whole 
fluid range of densities (17). 

I shall not discuss the other transport 
coefficients except to note again that at 
higher densities the property-transport 
coefficients contain a nonnegligible col- 
lisional (potential) contribution. Thus 
while the ratio of Dp to the viscosity is 
a constant, about 1.2, for the Boltz- 
mann hard-sphere gas, it is the product 
of D and the viscosi,ty which is more 
nearly independent of p at sufficiently 
high densities in rough agreement with 
an often-used empirical correlation for 
liquids. 

Summary and Further Developments 

I have noted that the hard-sphere 
model for a dense, supercritical fluid 
qualitatively reproduces the observed 
behavior in that it undergoes a phase 
transition into a solid phase at a den- 
sity sufficiently high, yet still below 
close packing of the spheres (18). The 
analysis of the mechanical basis of the 
pressure led us naturally to study the 
spatial correlation in such a fluid. The 
spatial correlation affects particularly 
the effective density of hard spheres in 
contact. This entity was most conven- 
iently examined by focusing attention on 
density fluctuations which create spher- 
ical cavities in the fluid. We thus ob- 
tained a very satisfactory approxima- 
tion to the equation of state. Further 
analysis of the mean free path and 
the effect of spatial correlation on it 
allowed us to deduce the behavior of 
the self-diffusion coefficient. 
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I have connected, in passing, our 
"scaled particle" results with actively 
evolving theories such as the Percus- 
Yevick theory (16) and have men- 
tioned the knowledge of the first few 
coefficients in the development in den- 
sity of the equation of state, the so- 
called virial series. The nature of the 
mathematical convergence of this series 
and certain related questions are cur- 

rently under investigation and have an 
important bearing on the phase transi- 
tion problem as well as on the behavior 
of the fluid at low density. At very 
high densities, near to close packing, 
an (asymptotic) expansion in the re- 
ciprocal density has recently been ob- 
tained (19). This, too, promises to 
shed light on the elusive mathematical 

problem of the phase transition and 
the structure of the "solid" phase. 

To further understand real fluids 
we have to take into account the soft, 
primarily attractive part of the inter- 
molecular potential. At high enough 
temperatures the soft (nonhard) core 
part of the intermolecular potential 
can be systematically treated as a 
small perturbing potential acting on 
a fluid composed of the hard cores 
of the molecules. Such a perturbation 
theory has been developed both for the 
equation of state (20) and for the 
transport coefficients (21). The thus 
corrected equation of state will predict 
a condensation and the appearance of 

I have connected, in passing, our 
"scaled particle" results with actively 
evolving theories such as the Percus- 
Yevick theory (16) and have men- 
tioned the knowledge of the first few 
coefficients in the development in den- 
sity of the equation of state, the so- 
called virial series. The nature of the 
mathematical convergence of this series 
and certain related questions are cur- 

rently under investigation and have an 
important bearing on the phase transi- 
tion problem as well as on the behavior 
of the fluid at low density. At very 
high densities, near to close packing, 
an (asymptotic) expansion in the re- 
ciprocal density has recently been ob- 
tained (19). This, too, promises to 
shed light on the elusive mathematical 

problem of the phase transition and 
the structure of the "solid" phase. 

To further understand real fluids 
we have to take into account the soft, 
primarily attractive part of the inter- 
molecular potential. At high enough 
temperatures the soft (nonhard) core 
part of the intermolecular potential 
can be systematically treated as a 
small perturbing potential acting on 
a fluid composed of the hard cores 
of the molecules. Such a perturbation 
theory has been developed both for the 
equation of state (20) and for the 
transport coefficients (21). The thus 
corrected equation of state will predict 
a condensation and the appearance of 

a liquid phase that ceases beyond the 
so-called critical point. Space does not 
permit me to enlarge on these questions 
or on the bearing they have on phase 
transitions in general in other many- 
body problems (22). 
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It has been said that science has no 
ethical basis, that it is no more than a 
cold, impersonal way of arriving at 
the objective truth about natural phe- 
nomena. This view I wish to challenge, 
since it is my belief that by examining 
critically the nature, origins, and meth- 
ods of science we may logically arrive 
at a conclusion that science is in- 
eluctably involved in questions of 
values, is inescapably committed to 
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standards of right and wrong, and un- 
avoidably moves in the large toward 
social aims. 

Human values have themselves 
evolved. Man arose after some two bil- 
lions of years of organic evolution, 
during which species after species 
originated, flourished, and fell, or oc- 

casionally became the progenitors of 

species that were new and better 
adapted, on the basis of the evolu- 
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casionally became the progenitors of 

species that were new and better 
adapted, on the basis of the evolu- 

tionary scheme of values. Fitness, like 
it or not, in the long run meant simply 
the contribution of each trait and its 

underlying genes to survival. High 
mortality or sterility led to extinction; 
good viability and fertility enabled a 

gene or a trait, an individual or a spe- 
cies, to be perpetuated. Man's own 
values grew out of his evolutionary 
origins and his struggle against a hos- 
tile environment for survival. His loss 
of certain unnecessary structures, such 
as bodily hair once clothing was in- 
vented; the homeostatic regulation of 
his body temperature and blood pres- 
sure, breathing, and predominant di- 
rection of blood flow; his embryonic 
and fetal growth inside the mother and 
his prolonged dependence upon ma- 
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