
7. The fallout trays were low-sided flat pans 
covered to a depth of about 1.3 cm with 
polyethylene spheres 0.63 cm in diameter. Be- 
cause most of the particles are traveling at 
extremely low angles at the moment of col- 
lection, orientation of the tray and the mi- 
crometeorology of its vicinity are very im- 
portant; it is unlikely that the geometric 
area of the tray is equivalent to that of the 
ground. Moreover, the polyethylene balls com- 
plicate the chemistry by making difficult the 
removal of the collected material. We shall 
not use this type of collector again. 
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Exchange of Carbon-Bound 

Hydrogen Atoms ortho to the 
Hydroxyl Group in Tyrosine 

Abstract. The carbon-bound hydro- 
gen atoms of tyrosine that exchange 
with solvent protons in strongly acid 
solutions at about 100?C are not the 
methylene hydrogen atoms but a pair 
on the aromatic ring. Of the two pairs 
of protons on the aromatic ring, ob- 
served in the proton magnetic resonance 
spectra, the pair at higher field under- 
goes exchange in 2.4N DCI at 100?C. 
Other hydrogen atoms, attached either 
to aliphatic or aromatic carbon atoms, 
exhibit no noticeable exchange under 
the same conditions. From a chemical- 
shift analysis the exchanging protons 
are assigned as those ortho to the hy- 
droxyl group on the aromatic ring. 

Study of hydrogen-isotope exchange 
has been used to acquire information 
concerning the secondary structure of 
proteins. In small model compounds and 
peptides, hydrogen atoms bound to car- 
bon exchange very slowly or not at all 
at reasonable temperatures and pH, 
whereas hydrogens bound to oxygen 
or nitrogen exchange rapidly with hy- 
drogen in the solvent. Peptide hydro- 
gen atoms bound to nitrogen in proteins 
frequently exhibit a slower rate of ex- 
change with solvent hydrogens than 
small peptides. This slower rate is as- 
cribed to hydrogen bonding of the hy- 
drogens or to their inaccessibility in 
a hydrophobic core of proteins (1). 

Under more extreme conditions of 
temperature and acidity, carbon-bound 
hydrogens may also exchange with sol- 
vent protons. In a study of tritium ex- 
change of proteins and amino acids in 
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protons (2). These investigators as- 
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the methylene group of tyrosine. 
Though this assignment is that expected 
for base-catalyzed exchange, it seemed 
unlikely for acid-catalyzed exchange. 
For this reason we studied the exchange 
of tyrosine hydrogens in DC1 solutions 
at 100?C by proton-magnetic-resonance 
spectroscopy. In 18 hours we found no 
noticeable exchange of the methylene 
hydrogens but observed exchange of 
one of the two pairs of hydrogens at- 
tached to the aromatic carbons. 

The proton-magnetic-resonance spec- 
tra were recorded on a Varian A60 
spectrometer at room temperature. 
Chemical shifts are recorded as T values 
with tetramethylsilane as an external 
standard. Tau values are obtained by 
subtracting the chemical shift in parts 
per million from the value of 10.0 as- 
signed to tetramethylsilane. Higher r 
values correspond to higher fields, and 
all tyrosine peaks appear toward the 
low-field side of the tetramethylsilane 
peak. No magnetic susceptibility cor- 
rections have been applied. 

The spectrum of 0.3M tyrosine in 
2.4N DC1 consists of an apparent 
doublet centered at 6.7 T, a triplet cen- 
tered at 5.6 r, and a complex A2B2 pat- 
tern with centers at 3.0 and 2.7 r. From 
their position and spin-spin splitting 
patterns, the two high-field bands are 
assigned to aliphatic CH2 and CH 
groups, respectively. On expanded scale 
these two high-field bands appear as a 
deceptively simple three-spin system (3) 
with an average coupling constant of 
7.0 cy/sec. 

By analogy with other results (4), 
the aromatic hydrogens at 3.0 r are 
assigned to the pair ortho and those at 
2.7 r (lowest field) to the pair meta to 
the hydroxyl group on the benzene 
ring of tyrosine. These last two groups 
of protons are spin-spin coupled, and 
they give rise to the A2B2 pattern. 

After heating the DCl solution of 
tyrosine for about 18 hours at 100?C, 
the proton-magnetic-resonance spectrum 
at room temperature was similar to that 
recorded above, except that the peaks 
centered at 3.0 r had disappeared. Only 
a singlet appeared at 2.7 r for the 
pair of aromatic hydrogens in the meta 
position to the hydroxyl group. No 
other changes due to heating were ob- 
served in the spectrum. 

The results indicate that neither the 
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aliphatic CH2 or CH protons undergo 
exchange, after about 18 hours at 
100?C, with deuterium in the acidic 
solvent. Disappearance of the complex 
A2B2 pattern and appearance of a sharp 
singlet at the lowest-field position after 
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heating demonstrates that the high-field 
pair of aromatic protons has undergone 
exchange. From the chemical-shift anal- 
ysis the pair of hydrogens that ex- 
changed with deuterium of the solvent 
is in a position ortho to the hydroxyl 
group of tyrosine. 

Hydrogen isotope exchange of p- 
cresol in aqueous sulfuric acid solu- 
tions has been determined gravimetrical- 
ly by Gold and Satchell (5), who 
stated, "it seems legitimate to assume 
that the two nuclear positions con- 
cerned in the exchange are those ortho 
to the hydroxyl group." The chemical- 
shift analysis of our proton-magnetic- 
resonance study permits separate iden- 
tification of each type of hydrogen en- 
vironment and establishes that exchange 
does indeed occur predominantly in 
positions ortho to the hydroxyl group in 
p-substituted phenols. Possible mech- 
anisms for the acid-catalyzed exchange 
have been discussed (5, 6). 
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Radiolysis of Estrone and 

Estradiol 

Abstract. Gamma irradiation of es- 
trone and estradiol in IN aqueous 
sodium hydroxide results in the forma- 
tion of 2-hydroxyestrone and 2-hydroxy- 
estradiol, respectively. Estrolactone 
(16a-oxa-D-homoestrone) was not en- 
countered. 

Keller and Weiss (1) reported that 
the only product formed in the x-ray 
radiolysis of estrone in aqueous sodium 
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hydroxide was a low (2-percent) yield of 
estrolactone. The radiolysis of aromatic 
compounds in aqueous solution usual- 
ly leads to the formation of phenols. 

Estrone was irradiated in 1N so- 
dium hydroxide with cobalt-60 y rays, 
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