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Data Analysis 
the Frontiers of Geophy: 

More can be learned from data by wise use of spec 
analysis, choice of expression, and straggling v; 

John W. 

In the last decade and a half, at 
least in those areas of geophysics with 
which I have had the most contact, 
relatively new techniques of analyzing 
data have played an increasingly im- 
portant part in revealing interesting 
geophysical facts. It was only about 
two years from the time we began to 
obtain experimental knowledge about 
the natural modes of vibration of the 
earth until we were studying their 
multiplet structure. It was only a few 
years from the time workers in this 
laboratory first detected the very long 
waves which reach this coast from 
15,000 kilometers away (1) until it 
was possible to use multistation ar- 
rays to determine the direction of ar- 
rival of such waves and to obtain a 
detailed and reliable correspondence 
between wave records on the coast of 
California and the known behavior of 
storms in the Indian Ocean and be- 
yond. 

More recently, studies by Gordon 
MacDonald (2) have converted the 
mystery of the source of driving force 
for the continual but somewhat ir- 
regular 10-monthly Chandler wobble 
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prove to be something of a surprise. 
The most I can hope to do is to 
forecast newer uses and natural de- 
velopments of today's methods. 

There are three areas about which 
and I feel I must speak. 

1) Spectrum analysis, in the broad- 

SiCS est sense-a field in which one can 
see a variety of the newer techniques 
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mic waves through the earth (3) are 
all instances of situations where these 
two properties hold to good, but but 
perfect, approximations. In these in- 
stances, as in many others, both the 
good approximation and the nature 
and causes of the deviations from per- 
fect stationarity and origin-shift in- 
variance are of scientific importance. 
Both must concern those who are to 
analyze the data. 

There may be little in a name, but 
there are times when much can be 
said for having at least one. Let us 
call anything that exhibits, to an ap- 
proximation adequate for immediate 
purposes, the two properties of in- 
variance and superposability an IS-box. 
Those mathematical idealizations that 
exhibit both properties precisely and 
exactly can then be called perfect 
IS boxes. 

Our instruments, and our computa- 
tions, provide many other examples 
of is-boxes. Many electric circuits, 
both those used in science and those 
used in stereo high-fidelity, are care- 
fully designed to be good is-boxes, 
as are both (i) the hydraulic circuits 
in the tsunami recorder on the pier 
of the Scripps Institution of Oceanog- 
raphy (4), which gives warning of so- 
called tidal waves, and (ii) many sim- 
ple computational procedures, like dif- 
ferencing and most smoothing proce- 
dures. 

Every is-box must have a very sim- 
ple property, one that relates to its 
treatment of frequencies: if a signal 
consisting of a single frequency en- 
ters the box, what comes out is a 
signal of the same single frequency! 
Once this holds for single frequencies, 
the superposability condition ensures 
that similar relationships will hold for 

pairs of frequencies, for triples, for 

quadruples, and so on. If, for example, 
a signal made up of only four particu- 
lar frequencies enters an is-box, the 

output signal must be made up of the 
same four frequencies and no others! 
And, more than this, the output at 
each of these frequencies must be 
determined solely by the input at the 
same frequency. This is a property of 
nonintertwining-of not getting cer- 
tain constituents of the signal en- 
tangled with one another. This prop- 
erty of frequencies and is-boxes is of 
extremely great importance: it is the 

key property of frequencies and the 
reason for spectrum analysis. 

Just so long as the information we 
need about some phenomenon is ex- 
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pressed, at any one place and time, 
in a distribution of activity or energy 
or power over frequency, we have a 
hope of going from the there-and- 
then to the here-and-now. For if 
propagation, and instruments, and pre- 
liminary computations are all Is- 
boxes, the needed information will 
come through, possibly in modified 
form, into our analysis. We must be- 
ware the distractions of superposed 
noise and the deformations of wildly 
varying frequency responses, but we 
have a fighting chance to learn here 
what happened there. 

This is the main reason why we are 
able to learn from data by simple 
spectrum analysis. There are, indeed, 
situations where it is interesting and 
useful to check detailed theories in 
terms of questions such as: Is the in- 
tensity of the spectrum near this fre- 
quency quantitatively what we would 
expect it be be? We dare not neglect 
these opportunities to make quantita- 
tive comparisons, but we should bear 
in mind that, on balance, such com- 
parisons are probably less important 
than what we can learn about some 
phenomenon from qualitative aspects 
of an appropriate frequency spectrum. 

So far I have been talking about 
the most elementary and naive form 
of spectrum analysis, "looking at the 
spectrum." Here we are really asking 
only one question: How much activity 
is present at various frequencies? 
This question has, on occasion, proved 
very illuminating, as in Munk and 
Snodgrass's detection (1) of the very- 
long-period waves coming 15,000 to 
20,000 kilometers, from the Indian 
Ocean and beyond to the coast of San 
Clemente Island. We may both hope 
and expect that this approach will be 
equally helpful many times in the fu- 
ture. We should realize, however, that 
this is, by and large, a technique which 
is most effective in detecting phenom- 
ena that were really clamoring for our 
attention-even though the "clamor" 
may have been such a feeble whisper 
that we needed much care and ampli- 
fication to hear it. 

It is a commonplace of science that, 
where one can, one learns faster by 
deliberately reaching in and changing 
something-by seeing what happens 
when something is varied in a con- 
trolled way. Reaching in can be very 
much better than just sitting idly by. 
Astronomers have little choice; they 
must sit. Planetary physicists are in 
nearly the same situation. Geophysi- 

cists can reach in and vary little things, 
but not big ones. All need to ask: 
How can at least some of the ad- 
vantages of reaching in be had when 
one can only sit and look? 

The answer is simple-and well 
known: look in two places and try to 
assess the relationship of the two 
things observed. If one "causes" the 
other, you can learn about the process 
by which this occurs. If things are not 
this simple you may learn much about 
why they are not simple. If two places 
are not enough, try three, or four- 
or more. Where both what is varied 
and what is observed have steady-state 
values, one of which can be plotted 
against the other, this advice is both 
good and easy to take. It is equally 
good, but less easy to take, when each 
thing observed is a time series. 

I emphasized the separateness of 
frequencies in an is-box; by contrast 
I must emphasize the horrible unsep- 
arateness of values at specific times. 
The mathematician, when told that y 
causes x, automatically writes y - 
f(x). This is occasionally reasonable. 
But when y is y(t) and x is x(t) it 
is too easy to act, or think, as if 
y(t) - f[x(t)]-as if the box repre- 
senting the connection from one to 
another were an instantaneous box- 
so that the output now does not de- 
pend on the input in the past. Some 
simple things we do in computation 
are instantaneous boxes, as are some 
simple physical phenomena-indeed, 
ideal wave propagation, without dis- 
persion, reflections, absorptions, or 
measuring devices (without, that is, 
the grim realities), differs from an in- 
stantaneous box by only a shift of 
time origin-but the real world is 
rarely even approximately instantane- 
ous. The is-box is of much wider ap- 
plication among time series than is 

y - f(x). 
To apply the maxim "Look here, 

look there, compare, and interrelate" 
to time series, then, we very often 
need to work in terms of frequency 
descriptions of these series, rather 
than in terms of time descriptions, 
and to introduce ideas and techniques 
that are closely related to some corre- 
sponding sort of spectrum analysis. To 
do this we must have concepts de- 
scribing the interrelation of frequen- 
cies in two or more time series, and 
we must have ways of assessing what 
seems, in terms of these concepts, to 
be going on. 

Such concepts appeared first in the 
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theory of polarized light, where dif- 
ferent polarizations at different fre- 
quencies are, for example, provided by 
passing white light through almost any 
polarizer, and then through a solution 
of cane sugar. In terms of the cross- 

spectrum of two time series, a function 
of frequency that describes a distri- 
bution of joint activity over frequency 
-a description that has to use com- 
plex numbers in order to cope, for 
instance, with the difference between 
plane and circular polarization-we 
can develop a wide variety of tools 
and techniques. It was by using the 
cross-spectrum, for example, that the 
direction of arrival was fixed for the 
waves arriving on the California coast 
from 1.5,000 kilometers away (5). 

Given two time series, and wishing 
to learn about the existence and na- 
ture of their interrelationship, it is all 
too easy to place a plot of y against 
t above a plot of x against t and then 
sit and stare-easy and misleading. 
Dispersion, or reflections, or preferen- 
tial absorption, or the vagaries of in- 
strumentation-any or all of these 
can conceal real relationships. In any 
situation, chance can cause the ap- 
pearance of relationship to arise by 
accident, but chance's behavior is here 
much more threatening than usual. For 
the ways of chance are rarely simple, 
and are often unexpected, when they 
affect a plot of y = y(t) or a paired 
plot of y = y(t) and x = x(t). 

If, on the other hand, we study the 
cross-spectrum of the two series, giv- 
ing due attention to the individual 
spectra, we deal with nonintertwined 
quantities and can reach conclusions, 
or suspicions, that are both more 
reasonable and more easily compared 
with the effects of chance. We cannot 
ask more from such a procedure than, 
in the non-time-series case, we could 
ask from a plot of y against x; if 
y and x are both caused by z, the 
plot is likely to look as if either caused 
the other. But we can ask as much- 
and we may discover more than we 
expected. Thus, if, for example, the 
relation of y to x is different for one 
range of frequencies than for another, 
we are likely to discover this fact 
if we look at the cross-spectrum and 
its relatives. 

The easy way to summarize what 
has just been said about cross-spectra 
is to say that measuring relationship 
is almost always more rewarding than 
measuring relative contribution to vari- 
ability. We can learn a fair amount 
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from the second, but, whenever we 
can use the first, we will learn much 
more from it. And the cross-spectrum 
will enable us to do this in many 
more areas of geophysics. 

So much for the spectrum and the 
cross-spectrum, which are important 
because of frequencies, which can be 
defined, if we so wish, in terms of 
averages of expressions involving 
squares and simple products of obser- 
vations, and which provide contribu- 
tions that will add up to give any one 
of these average values. Let us ask 
"What next?" Can we define analogous 
concepts in terms of third-degree ex- 
pressions, such as cubes and triple 
products of observed values? Can we 
go beyond this? Will such definitions 
prove useful? We can, we did, and 
they have. 

I spoke earlier about the preserva- 
tion and nonintertwining of frequen- 
cies as signals or phenomena pass 
through Ts-boxes, be these of rock or 
of water or instruments or computa- 
tions. There are similar laws for the 
more complicated "bifrequencies," 
which describe the interrelatedness of 
what goes on at different frequencies. 
Bifrequencies can, if you insist, be in- 
dexed in terms of pairs of frequencies, 
but our thinking, our analogies, and 
our algebra all become much clearer 
if we index each of them in terms of 
a triple of frequencies, positive and 
negative, whose sum is exactly zero. 
Each such triple contributes its share 
to each third moment-to the aver- 
age value, that is, of every homogene- 
ous expression of degree 3 in the 
observations. Each triple does this as 
a whole; no part of the contribution 
can be validly assigned to any one 
frequency or to any pair of fre- 
quencies. 

The key points are these. Each bi- 
frequency passes through any perfect 
is-box just as if no other bifrequency 
were present. Each bifrequency comes 
out of any perfect is-box at exactly 
the same bifrequency at which it went 
in. What an is-box does to a bifre- 
quency is fixed, in a simple way, by 
what that is-box does to the three fre- 
quencies that index the bifrequency. 

It is this preservation and noninter- 
twining of bifrequencies that allows 
us to listen, here and now, to the 
labels that some nonlinear interac- 
tion has applied, far away and at 
some other time, to our time series. 
So long as the media, the processes, 
the devices, and the preliminary corn- 

putations are all good approximations 
to perfect is-boxes, the original label 
from that nonlinearity will remain at- 
tached, even though other, hopefully 
niinor, nonlinearities between "there" 
and "here" may add other labels. (We 
may have to give some attention to 
the fact that we can observe only the 
arithmetic sum of these labels, so that 
there may be some concealment by 
over-labeling. But this would not be 
the first time we have had to look 
under arithnietic sums in order to find 
the things that were really of concern 
to us.) In those cases where relatively 
large amounts of relatively good data 
can be obtained, there seems to be 
no possible conclusion but that bi- 
spectral analysis will enable us to learn 
niuch about nonlinearities, even rather 
weak ones, even when data are ob- 
tained at places and times rather re- 
mote from those where the nonlinear 
interaction actually took place. 

And the cross-bispectrum offers us 
opportunities which go at least as far 
beyond the bispectrum as the cross- 
spectrum goes beyond the spectrum. 
For those cases where we can get the 
rather long series required, and can 
afford rather substantial amounts of 
calculation, such types of data analysis 
have an important and useful future. 

Bispectrum and cross-bispectrum 
analysis are far from being the only 
higher-order types of spectrum analy- 
sis which offer promise. The study of 
higher-order nonlinearities, or interac- 
tions involving more than two series 
at a time, may be investigated with 
the aid of the trispectrum, or of other 
higher analogs of the bispectrum and 
the cross-bispectrum. These will re- 
quire still more data and still more 
computing time; we will hope not to 
be forced to use them too often, but 
we should be glad to know that they 
will be there when we need them 
most. 

Moreover, while it is true that all 
fourth moments can be represented in 
terms of the trispectrum, all fifth mo- 
ments in terms of the tetraspectrum, 
and so on, this is not the only possi- 
bility; there are other approaches, 
sometimes more useful. If one is in- 
terested in some aspects of the noise 
made by a symphony orchestra, it is 
natural to say that the orchestra plays 
a certain note, now loudly, now softly, 
now not at all, or that a certain note 
recurs every so often. One way of 
studying data from such a point of 
view is to find an apparent spectrum 
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for each of many short intervals of 
time and then study the variations 
from one spectrum to another. If one 
goes so far as to calculate the spec- 
trum of the spectrum, as has been 
done, for instance, at Rocketdyne Di- 
vision of North American Aviation, 
then one is again decomposing a 
fourth moment, but not in terms of 
specific trifrequencies. As time goes 
on, we may expect a slowly increasing 
variety of higher-order techniques of 
this sort to develop. 

Moreover, there are situations in 
which one may want to use nonlinear 
techniques to answer questions which 
are about linear phenomena and 
which, at least naively, would seem to 
be most naturally answered by linear 
procedures of analysis. In one situa- 
tion-the analysis of time series for 
echoes-there is at least a moderate 
amount of evidence that this is a good 
thing to do. The first work in this 
connection was directed toward solu- 
tion of a geophysical problem: Can 
one assess the echoes on a seismograph 
record well enough to be able to lo- 
calize the depth of the source of the 
signal? 

The work that Bruce Bogert, 
Mike Healy, and I did on this (6) 
was not sufficient to produce any great 
advance in the geophysical problem. 
We did learn, I think, enough about 
what can be done with linear and non- 
linear techniques to realize that there 
may be very great advantages in us- 
ing nonlinear techniques in such stud- 
ies. On the one hand, there are proce- 
dures involving a quadratic analysis of 
a logarithm of the result of a quadratic 
analysis-a combination which, as you 
see, already escapes all polynomial de- 
scription. The cepstrum so obtained 
seems to have very real possibilities 
for certain sorts of echo-like problems. 
The sequence of a quadratic proce- 
dure, a logarithm, a linear procedure, 
an antilogarithm, and another linear 
procedure leads, among many other 
possibilities, to what we called the 
pseudoautocorrelation function, which 
seems to be a better indicator of 
echoes than the autocorrelation func- 
tion itself and to offer interesting pos- 
sibilities of its own. 

It would be fair, I think, to say 
that the science and art of frequency 
analysis-of a frequency analysis com- 
bining the statistician's ideas, frequency 
ideas, the power of digital computers, 
and good data-have now advanced 
to a crucial stage: If one can be really 
specific as to what aspect (expressed 
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clearly in frequency terms) of a time 
series or space function one wishes 
to study, one can at least make rea- 
sonable, and probably moderately ef- 
fective, suggestions as to how this can 
be done. We have come a long way 
in the last decade and a half; we can 
expect to go further in the future. 

Expression of Data 

The growing power and flexibility 
of frequency methods are going, willy- 
nilly, to lead the geophysicists-along 
with many others-into more careful 
and effective ways of proceeding 
through an anlysis of data into ways 
that they will inevitably then begin to 
carry over into other problems, some 
of them classical, where time series do 
not appear. The logical consequences 
of Gordon MacDonald's analysis of 
the bispectra of very long pressure 
and temperature records offer one 
example of how this may begin. In 
these bispectra he has found the traces 
of several kinds of nonlinearity in the 
process by which the daily influence 
of the sun on the rotating earth has 
been transmitted to the pressure, or 
temperature, that was actually mea- 
sured. And it is rather clear that 
different nonlinearities occur at differ- 
ent stages of this process. As it be- 
comes more and more interesting and 
important to unravel and understand 
successive nonlinearities, geophysicists 
will undoubtedly begin, in many areas, 
to reprocess their observational rec- 
ords in such a way as to remove one 
nonlinearity after another. By doing 
this, beginning perhaps with the larg- 
est nonlinearity, perhaps with the lat- 
est one, they will reveal, more and 
more clearly, the traces of earlier and 
smaller nonlinearities. 

We have long expressed many geo- 
physical quantities, such as sunspot 
numbers and various magnetic charac- 
ter figures, in terms that all would ad- 
mit to be somewhat arbitrary. Through 
our choice of how these quantities are 
expressed, we are probably guilty of 
producing the largest nonlinearity of 
all those each of these time series ex- 
hibits. If-often by so simple a 
change as taking square roots, or 
logarithms-we can eliminate most of 
these nonlinearities by a more appro- 
priate and useful choice, perhaps 
guided by the bispectrum of a trial 
expression, we will be able to see much 
more deeply into the phenomena these 
time series describe. 

Those who like to assess such useful 
changes at far less than their actual 
value often speak of their use as 
"making transformations," but we dare 
not follow their assessments. We must 
realize that wise choice of what is to 
be analyzed is a natural part of trying 
to let the data speak for themselves- 
something which each of us owes to 
his data as part of careful and pains- 
taking analysis. It seems to me in- 
evitable that, once we have learned, 
with the guidance of the bispectrum, 
to make such a choice in analyzing 
time series, we will carry over similar 
considerations, and equal care in the 
expression of data for analysis, to 
many other circumstances-to circum- 
stances where we could, long ago, 
though perhaps on less objectively 
clear evidence, have improved our 
analysis of data by expressing them in 
a wisely chosen mode before starting 
our arithmetic mills, today computer- 
ized and speeded up, to grinding. 

Even the simplest procedures of 
classical data analysis-calculating an 
arithmetic mean, or taking the differ- 
ence of two observations-are really 
delicate devices intended to be as suc- 
cessful as they reasonably may be in 
screening out the unwanted while pass- 
ing through the wanted. To do this 
with great skill and high effectiveness, 
such devices must depend, though 
their usual formulations often do not 
emphasize or notice this, upon very 
precise definitions of what is unwanted 
and what is wanted. It is usually far 
easier and far more effective to ex- 
press the data to fit the analysis than 
to tortuously warp the analysis to fit 
a twisted expression of the data. Thus, 
for example, taking logarithms of the 
raw data is far easier than converting 
a complex calculation from arithmetic 
means to geometric means. It is our 
obligation to express our data so that 
the precise definitions inherent in our 
processes of analysis correspond as 
closely as possible to those definitions 
that will serve us best. 

The choice of a mode of expression 
seems dull, it lacks the glitter of spec- 
trum analysis. It seems to offer only a 
way to do the old things better, not a 
way to do the new and unsuspected. 
Yet its long-term promise for geophys- 
ics, like that of better methods of deal- 
ing with errors and fluctuations that 
do not follow the magic bell-shaped 
curve of Gauss and Laplace, may be 
greater, not less. 

The analysis of data is not simple; 
accordingly, simple-seeming things may 
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have great importance. For the three 
decades from Schuster to modern spec- 
trum analysis, geophysicists thought 
the examination of time series for fre- 

quencies was a simple, well-understood 

subject-they merely did not like the 
results. How many other techniques of 
data analysis are today in a similar 

period of repose and misunderstand- 

ing? 

Modification of Techniques 

Geophysicists have long had a sub- 
stantial understanding of the most 
obvious problems associated with what 
in general might be called spotty data. 
No one who has associated with Sir 
Edward Bullard, for example, can fail 
to be aware of the importance which 
he places on the easy and automatic 
editing of time series for gross errors 
and omissions. In this sense, it is fair 
to say that geophysicists came early 
to some of the problems of spotty data 
and started long ago to do effective 
things about them. And one can say 
this in other senses as well, for the 
early work on the rejection of obser- 
vations seems to involve either survey- 
ing, which we might consider applied 
geophysics, or actual geophysical mea- 
surement. And, among those who. have 
devoted much effort to the analysis 
of data in a statistical framework, it 
is probably Sir Harold Jeffreys who 
has given most attention to what would 
be a relatively precise and efficient way 
to analyze observations which are, in 
fact, not distributed according to the 
magic bell-shaped curve of Gauss and 
Laplace. Geophysical data and geo- 
physicists have been deeply involved 
in such questions, but the conse- 
quences of these considerations for the 
actual analysis of data have been far 
less deep and less widespread than one 
might have expected or hoped. We do 
not, yet, see many data analyzed by 
methods appropriate for situations 
in which distribution tails straggle more 
-that is, fall less abruptly-than those 
of Gaussian distributions. There are 
papers, it is true-for example, one in 
the Monthly Notices of the Royal 
Astronomical Society, by Henry Hulme 
and L. S. T. Symms (7)-which deal 
with the use of these methods for 
analyzing large bodies of data, where 
one can select a specific modified 
method very closely adapted to the 
data at hand. 

This, however, is not the real prob- 
lem of spotty data. The real problem 
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is the devising of methods which will 
work well over a wide range of dis- 
tributional shapes-methods which will 

squeeze as much from the data as it 
is reasonable to try to get; methods 
which can be applied to small and 
medium-sized sets of data as well as 
to large sets. 

Once upon a time, when we cal- 
culated by hand, fitting by least 
squares could be a lot of effort, but 
the computer has changed all this. To- 
day, when the constants to be fitted 
enter linearly into the expressions for 
the typical values of the observations, 
fitting by least squares is easy to han- 
dle in practice, and for a very simple 
reason: minimizing a quadratic crite- 
rion leads inevitably to solutions ob- 
tained by linear processes and to as- 
sessments of the quality of these solu- 
tions obtained by processes not more 
complicated than quadratic. 

If we must be realistic (as I assert 
we will have to be), if we are to get 
anywhere near the most out of our 
data, then we must face up to the pos- 
sibility-nay, the near-certainty-that 
the distribution of our observations 
will often be one for which minimiz- 
ing a quadratic is a very bad choice. 
And it requires only almost impercepti- 
ble modifications of the shape of a 
Gaussian distribution to make the use 
of the arithmetic mean a slightly in- 
ferior way to summarize the typical- 
value behavior of a sample, and to 
make its sum-of-squared-deviations an 
almost unbearably poor summary of 
its spread (8). The price of thinking 
more generally and more usefully here, 
of acting more realistically, will be 
that our procedures will become more 
nonlinear, and almost certainly itera- 
tive, and that, in particular, the pro- 
cedures for assessing the quality of the 
result will have to be at least some- 
what more complicated than evaluating 
a fixed quadratic function. There are 
many cases where improved methods 
of this sort, when we have them, will 
allow us to recover two or three times 
as much information from a given 
body of data as we are now able to 
get. Such increases are not trivial, they 
are not the sort of thing that can be 
neglected, or that can be regarded as 
less than important. In geophysics, as 
in so many other fields, there are many 
situations where it would be extremely 
difficult, if not impossible, for a work- 
er to obtain a two- or threefold in- 
crease in the number of observed data 
bearing on his problem. In these cir- 
cumstances, increase in the effective- 

ness of analysis may be the only way 
to a more precise result. 

It is relatively easy to describe, in 
more than one way, the essential char- 
acter of a least-squares fit. The prob- 
lem is to choose the description that 
will best illuminate the question at 
hand. For our present purpose, one 
suitable description runs as follows, at 
least for the moderately realistic case 
where the constants to be fitted enter 
linearly and where the observations, 
rigidly uncorrelated, are allowed to 
have different relative precisions in 
known ratios-to be subject to fluctua- 
tions and errors of differing variances 
which are known up to a multiplica- 
tive constant. We have a certain num- 
ber of parameters, we have tried vari- 
ous combinations of values for them, 
we have found a combination such 
that we are not urged, on balance, to 
modify any of them. Here the forces 
that urge us to increase (or decrease) 
a particular parameter are represented 
by the algebraic sum of contributions 
from every observation, where each 
contribution consists of the product of 
two factors, one factor reflecting the 
relative precision of the observation in 
question and the other measuring the 
displacement of that observation from 
the typical value which would be as- 
signed to it by the constants that we 
have fitted (that is, the values con- 
templated for the parameters). This 
type of least squares has long been 
known to have, in suitable circum- 
stances, many advantages. Among the 
procedures which are linear in the ob- 
servations and give correct values on 
the average, it is known to give fitted 
values with minimum variance and 
minimum average-square deviation. 
[This result was due to Gauss and is 
usually known as the Gauss-Markov 
theorem (9).] And, at the other ex- 
treme, if we know that our individual 
errors and fluctuations follow the magic 
bell-shaped curve exactly, then the re- 
sulting estimates are known to have al- 
most all the nice properties that peo- 
ple have been able to think of. These 
latter results are very pleasant and 
very important, but it would be easy 
to give them far too much weight. 
For, in practice, errors and fluctuations 
very rarely have magic properties, par- 
ticularly the magic bell-shaped distri- 
bution. 

We can generalize this procedure of 
"fitting by balancing forces" beyond 
this simple case. We can generalize in 
various ways, but it is clear that-at 
least in those situations where we know 
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the distribution of fluctuations and er- 
rors exactly-almost any of these gen- 
eralizations will be better than the cor- 
responding form of least squares. The 
essential issue underlying any generali- 
zation must be that the pulling power 
associated with the deviation of an ob- 
servation from the typical value cor- 
responding to the fitted constants is no 
longer directly proportional to the size 
of this deviation. To modify this de- 
pendence logically, we have to specify 
something about the nature of the dis- 
tribution of fluctuations and error. In 
general, as I am sure almost every 
geophysicist knows, distributions of ac- 
tual errors and fluctuations have much 
more straggling extreme values than 
would correspond to the magic bell- 
shaped distribution of Gauss and La- 
place. 

A fairly extreme case, going beyond 
what one sometimes sees in practice, 
is the case where the probability of a 
deviation from a central value is in- 
versely proportional to a quadratic 
function of this deviation. This type 
of distribution is known to the statisti- 
cians by the name of the French mathe- 
matician Cauchy and is, in particular, 
the distribution of the tangent of a uni- 
formly distributed angle. In order to 
provide one physical interpretation for 
it, we might consider the simplest 
model for the width of a spectral line, 
one involving merely a simple reso- 
nance. Here the distribution of energy 
over frequency will follow the Cauchy 
distribution. In this situation, if we 
were able to catch individual quanta 
and measure their energy exactly (as 
by measuring their frequency) and 
wished to make an inference from a 
collection of such measurements to the 
center frequency of the emission line, 
we would be tempted to proceed mere- 
ly by averaging the observations, form- 
ing the equally weighted arithmetic 
mean, and then looking at this. But 
a simple and well-known theorem 
states that, given n observations which 
independently follow the same Cauchy 
distribution, their arithmetic mean has 
a distribution exactly like that of each 
individual observation, in shape, in lo- 

cation, and in degree of spread. The 
man who takes an arithmetic mean of 
a sample from a Cauchy distribution 
has done the equivalent of throwing 
away all but one observation. 

If we ask what the pulling function 
should be in a situation like this, we 
find that, for small deviations, the pull- 
ing power at first increases almost pro- 
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portionately to the displacement, then 
it increases less and less rapidly, 
reaches a maximum, and eventually 
turns down. For very large deviations, 
indeed, the pulling power becomes 
arbitrarily small. It ought to surprise 
no geophysicist to be told that, when 
your distributions have very long tails, 
you are wise to make very little use 
of extreme observations. But the con- 
sequences of this for more or less 
linear methods of analysis are greater 
than you might expect. 

The natural thing to do, once we 
have got as far as dealing with the 
sum of pulling powers, is to ask: Can 
we express the effects upon the fitted 
constants in terms of a weighted in- 
fluence of the different observations- 
more particularly, a weighted influence 
of the values of the different observa- 
tions? To do this in the most reason- 
able way we must ask: How much 
will the fit change when the value of 
any single specific observation is 
changed? The answer to this depends 
on: How fast does the pulling power 
change as the value of this observation 
is changed? Indeed, this latter change 
can quite wisely be taken as express- 
ing the "weight" which is given to a 
specific observation. 

In the case of the Cauchy distribu- 

tion, and of many straggling-tailed dis- 

tributions, the pulling power reaches a 
maximum and then decreases as the 
deviation from the typical value based 
on the fit becomes more and more posi- 
tive. At that maximum value, the pull- 
ing power will not change with a small 
change in the deviation. Small changes 
in the value of the observation whose 
deviation falls at this maximum will 
have no effect at all on the resulting 
fit. The weight assigned to the value 
of such an observation is zero. For 
even larger deviations, increasing the 
deviation-moving the observation fur- 
ther away from the value that one 
would select by intelligent fitting-will 
decrease its pulling power. Such obser- 
vations act as if their values received 
negative weights, not positive ones! 

There is no escape from this type 
of conclusion. If the distribution of 
fluctuations and errors is sufficiently 
long-tailed, and precisely known, the 

only way we can make effective use 
of the values of very extreme obser- 
vations is by giving them negative 
weights and letting them push where 
we would expect them to pull, and 

pull where we would expect them to 

push. 

If we take a sample from a Cauchy 
distribution, for example, in a situa- 
tion where we know the value of the 
parameter analogous to line width, so 
that we are merely trying to decide 
where the center of the distribution 
falls, the sample median-the value 
such that there are as many observa- 
tions of greater value as of lesser 
value-conveys almost all the available 
information about the location of this 
center. There will remain some infor- 
mation to be recovered, but almost all 
of it is to be recovered by the back- 
ward process, just discussed, of say- 
ing: "The more positive the value of 
this observation, the more negative a 
typical value will I fit." This is a 
somewhat paradoxical conclusion, and 
we can be happy to learn that it fol- 
lows only if we can trust, precisely 
and in detail, the assumed way in 
which the probability of occurrence of 
a deviation decreases as the size of 
that deviation increases. This extra in- 
formation appears to be obtainable, but 
only because we pretend that we are 
dealing with a tight specification-that 
we have perfect knowledge of distribu- 
tion shape. The real world is usually 
not amenable to tight specification. 

The unreality of tight specifications, 
however, does not mean that we can 
ignore the problem of straggling tails; 
all our nice results about the arithmetic 
mean are associated, in one way or 
another, with the tight specification of 
the magic bell-shaped curve. They fail 
for the tight specifications correspond- 
ing to many straggling-tailed, but still 

bell-shaped, distributions, such as the 
Cauchy distribution. 

What are we to do about situations 
of this sort? Rather clearly, the extra 
information to be recovered by nega- 
tive weighting comes by courtesy of 
specific assumptions which we are un- 
likely to really know to be valid. The 
real situation is likely to be one in 
which we "fear" distributions like the 

Cauchy distribution rather than one 
where we know that we are, in fact, 
dealing with the Cauchy distribution. 
Accordingly, we ought to give up any 
thought of recovering this dubious in- 

formation, and we ought to be con- 
tent with what we can learn from some- 
thing that really provides us with the 
information that it appears to provide, 
a property we may reasonably expect 
to find in a measure which does at 
least moderately well for tight specifica- 
tions involving a rather wide range of 
distribution shapes. For, in this case, 
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things are as they should be: we do 
not have to worry very much about 
the exactness with which any particular 
tight specification represents the be- 
havior of the observations. 

There are such measures; the me- 
dian, which provides about two-thirds 
of the information in a large sample 
from a magic bell-shaped curve (and 
a larger fraction in small samples) and 
a very much larger percentage in 
samples from a Cauchy curve, is one 
such. It is not the best sort of com- 
promise, as far as one can tell at the 
moment; one does better-here "doing 
better" must be a matter of arriving at 
a better compromise rather than do- 
ing better everywhere-with, for ex- 
ample, the arithmetic mean of the cen- 
tral 80 or 90 percent of the obser- 
vations. 

Besides this particular procedure, 
known as trimming, in which we ap- 
pear to neglect the outer 5 percent of 
the observations at each end, there 
are many other ways of playing down 
the effect of the exact values of ex- 
treme observations; trimming can be 
replaced by Winsorizing (10) and by 
various other procedures which should 
not even be named here. But it is 
very important to notice that in none 
of these procedures are we wholly 
eliminating the effect of the extreme 
observations. 

We do not take explicit account of 
the quantitative values of these extreme 
observations-in fact we may go to 
considerable lengths to make sure that 
we have not done so! But, merely by 
existing and having values in a certain 
general range, such extreme observa- 
tions make it clear that other observa- 
tions are, in fact, not extreme, and 
thus determine what we do with these 

other observations. Thus, for example, 
if one were to wipe out the highest 
5 percent of observations in a large 
sample, such a measure as the mean of 
the central 90 percent of the observa- 
tions would shift downward, because 
we would have to eliminate more obser- 
vations at the top before forming the 
arithmetic mean of the remainder. 

In short, we have arranged to take 
qualitative, rather than quantitative, ac- 
count of extreme observations. In very 
many circumstances this is the right 
thing to do. It is through procedures 
which do just this-even though it may 
require a little thought to see what 
is being done-that we can hope to 
greatly increase the effectiveness of our 
analysis of many kinds of data, especial- 
ly in situations where the magic bell- 
shaped curve, though actually inappro- 
priate, has been relied upon in the 
past. 

Summary 

I have tried to talk about three 
areas in which I think newer techniques 
of data analysis will come into, or be 
developed in, geophysics which will 
advance our knowledge about the 
plasma-like, gaseous, liquid, and solid 
earth: (i) developments along the line 
of the concepts of the spectrum, with 
emphasis both on the use of cross- 
spectral methods of studying relation- 
ship and on bispectrum and higher 
methods of studying nonlinearities (in- 
cluding modulations) and frequency in- 
teractions; (ii) wise choice of modes 
of expression for analysis; (iii) the 
use of methods appropriate and effec- 
tive in situations where distributions of 
errors and fluctuations do not have 

exactly the magic bell-shaped distribu- 
tion. 

From past experience, I know which 
one of these you will think is of least 
importance: the choice of modes of 
expression for analysis. I would urge 
you to reconsider your intuitions, to 
give up the idea that the methods and 
techniques of data analysis are the only 
real keys to doing better, and to believe 
that the way you express your data 
for analysis may make it possible to 
learn much more. If geophysicists do 
this, individually and as a profession, 
then I think we will find, over the 
next decade or so, that all three of 
these areas have made major contribu- 
tions to the unraveling of the problems 
of geophysics. Beyond this, I hope, as 
I am sure you do, that other methods 
which we cannot now anticipate will 
appear and have similarly large effects. 
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