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Hexanedione from Hydrocarbon Polymer Oxidation 

Abstract. The diketone 2,5-hexanedione has been isolated as a product of 
the thermal oxidation of cis-1,4-polyisoprene and of copolymers of ethylene and 
propylene. This is confirmatory evidence for the formation of acetonyl radicals 
during oxidation of these polymers and their reaction with each other in the 
presence of oxygen as postulated earlier. 

In 1959 Tobolsky and Mercurio sug- 
gested that acetonyl (CH3COCH2-) 
radicals are produced during the oxida- 
tion of natural rubber with molecular 

oxygen and that these combine to form 
2,5-hexanedione (I): 
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An early attempt to check this sugges- 
tion was unsuccessful (2). Levulinal- 
dehyde is the dicarbonyl compound 
formed in highest yield during the un- 
catalyzed thermal oxidation of natural 
rubber; it was estimated that hexane- 
dione was formed in yield less than 5 
percent that of levulinaldehyde during 
oxidation in oxygen at 120?C (2). 

Acetonyl radicals have also been 
postulated to be intermediates in the 
oxidation of polymers and copolymers 
of ethylene and propylene (3) to ac- 
count for the formation of acetone. 

We now find that hexanedione is a 
product of the oxidation of both cis- 
1,4-polyisoprene (4) and ethylene pro- 
pylene copolymers containing 40 to 50 
percent combined propylene, with mo- 
lecular oxygen, at temperatures higher 
than used previously. The yield from 
natural rubber is raised to 5 to 10 per- 
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cent of that of levulinaldehyde when 
the temperature of oxidation is 150? to 
180?C. Precise estimation of the rela- 
tive yield is difficult with the fractiona- 
tion procedures available (5, 6). 

Apparatus, polymers, and procedures 
have been described (6-8). Samples 
were oxidized at atmospheric pressure 
in oxygen, with oven temperatures be- 
tween 150? and 180?C. Volatile prod- 
ucts were condensed in a trap at -80?C. 
Condensate collected in the trap in suc- 
cessive runs was combined and stored 
frozen in dry ice until sufficient mate- 
rial was collected. Preliminary frac- 
tionation of 0.75 g of condensate was 
done on 0.6 cm X 3 m chromato- 
graphic columns packed with 10 per- 
cent (by weight) of Pluronic 84 (9) 
supported on Haloport F (9). The frac- 
tion containing hexanedione (7, peak 
18, Fig. 1) was collected in ether; that 
from several runs was combined and 
refractionated (5) on a column of 10 
percent silicone fluid XF 1150 (9) 
supported on Haloport F. 

For identification, hexanedione was 
compared with authentic material for 
retention time on two substrates, infra- 
red spectrum, iodoform reaction, and 
x-ray diffraction patterns of the 2,4-di- 
nitrophenylhydrazone and of the semi- 
carbazone. 

The carbon-skeleton structure repre- 
sented by 2,5-hexanedione is not present 
in 1,4-polyisoprene. Infrared spectra of 
copolymers of ethylene and propylene 
have been interprefed as showing that 
tail-to-tail addition of propylene occurs 
(10); but the fraction of methyl groups 
separated by four chain atoms is small, 
and there is no reason to expect prefer- 
ential attack at 1,4-substituted sites in 
the saturated polymers. The most rea- 

sonable explanation for the formation 
of hexanedione from these dissimilar 
polymers, therefore, appears to be the 
hypothesis of Tobolsky and Mercurio. 

Acetonyl radicals may be formed 
from intermediates produced by intra- 
molecular attack by radicals in both 
polymers. In natural and synthetic 
polyisoprene the intermediate is a cy- 
clic peroxide as formulated in Eq. 1 
(11). In copolymers of ethylene and 
propylene the intermediate is formed 
by the mechanism suggested by Barusch 
and coworkers (12), as indicated sche- 
matically in Eq. 3. 
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Successive breaking of carbon-to-car- 
bon bonds, as indicated by the arrows, 
leads to an acetonyl radical. 

The evidence for the formation and 
subsequent reaction of acetonyl radicals 
with hydrocarbon and with each other 
in the presence of oxygen requires re- 
examination of the widely made as- 
sumption that the principal fate of 
hydrocarbon radicals at moderate tem- 
peratures and relatively low pressures 
is reaction with oxygen (13). It is true 
that under our conditions, rates of oxi- 
dation of the ethylene propylene copoly- 
mers and possibly of the polyisoprene 
were diffusion-controlled (14). How- 
ever, the rate of uncatalyzed oxidation 
of natural rubber is pressure sensitive 
up to at least atmospheric pressure un- 
der conditions where diffusion control 
is unlikely (8), and the rate of oxida- 
tion of simple, relatively unreactive, 
olefins is pressure-dependent up to sev- 
eral atmospheres at 120?C (15). The 
dependency implies that the concentra- 
tion of hydrocarbon radicals is not 
negligible relative to that of peroxy 
radicals at pressures near atmospheric. 
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diameter 
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1 4 0.65 2.12 0.36 1.80 0.28 
3 7 .87 1.83 .42 1.84 .25 
5 3 .89 2.11 .48 1.77 .28 

Table 2. Fraction of total radionuclide activity collected on each filter. 

No. of Filter A Filter B Filter 
samples Nuclide--- ----- - 

averaged* Range Average Range Average Range 

19 Cet44-Pr144 0.07-0.19 0.11 0.59-0.78 0.73 0.12-0.26 
18 Sb125- .07- .22 .11 .58- .78 .72 .10- .25 

8 Cs137 .08-- .19 .12 .65- .80 .72 .12- .22 
19 Zr"9-Nb95 .06- .20 .12 .61- .77 .72 .10-- .24 
19 Mn'4 .06- .25 .11 .57- .80 .74 .08- .24 
19 Ru"6-Rhl06 .07- .24 .13 .57- .78 .71 .10- .23 

* Because of low activity in some instances, less than 19 samples were averaged. 
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cause of their different retentivities of 
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