
significant effect. However, the results 
do show that ECS had a disrupting 
effect if given directly after the five 
learning trials. 

Results of this study support the 
consolidation hypothesis in showing 
that retroactive amnesia occurs without 
aversive effects when shock is not given 
repetitively and that time of adminis- 
tration affects retroactive amnesia, 
while location does not. These results 
are consistent with those of Hudspeth, 
McGaugh, and Thompson (7), who 
have shown that aversive effects pro- 
duced by ordinary shock become more 
intense over trials than aversive ef- 
fects produced by ECS. They also 
found that aversive effects produced 
after repeated ECS sequences were 
stronger than those produced by the 
first sequence. The results of the pres- 
ent study suggest that the findings of 
Lewis and Adams (4) were probably 
due to the aversive effects of repeated 
ECS sequences. Thus, avoidance and 
competing response explanations are 
not adequate to handle retroactive am- 
nesia produced in a single-ECS situa- 
tion. 

We are of the opinion that perhaps 
the single-shock and the sequential- 
shock techniques are each appropriate 
to answer different questions (for ex- 
ample, the relation between ECS and 
retroactive amnesia on the one hand 
and the relationship between the shock 
and aversion on the other). Thus, it is 
not a matter of which technique or 
theory is or is not supported; rather it 
is a matter of which technique is more 
fruitful or appropriate to answering a 
particular question. 

DWIGHT J. LEONARD* 

ALBERT ZAVALAf 

Department of Psychology, 
Kansas State University, Manhattan 
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Statistical Models for Predicting 

Numbers of Plant Species 

In "Species abundance: natural 
regulation of insular variation" [Science 
142, 1575 (1963)], Hamilton, Rubinoff, 
Barth, and Bush have compared two 
statistical models for predicting num- 
bers of species from environmental fac- 
tors. The first is a "linear" model, 
y - bx. The second is a "curvilinear" 
model y -= bx' where z 1. Although 
they give no exact statement of their 
test of "goodness of fit," they conclude 
that model 1 is the superior. 

Considering only the relation of spe- 
cies numbers (Y) to area (X,), much 
of the question of the form of the re- 
lation can be determined by a quick 
look at a simple scatter diagram. Figure 
1 shows a "natural" and Fig. 2 a '"log- 
arithmic" plot of the data. Also shown 
on each plot is the least squares fitted 
line for a simple regression. 

It is readily apparent from Fig. 1 
and 2 that the "scatter" about the line 
of Fig. 2 is more regular than that for 

Fig. 1. One of the assumptions of the 
use of goodness-of-fit tests is that the 
distribution of errors about a fitted 
line be independent of the value of the 
independent variable. This condition is 
not met for model 1. 

If errors are to be transformed for 
comparison, they must be transformed 
in a manner that is consistent with the 
regression equation used. Therefore, 
the sums of the squared deviations 

E ( Yi - ) 

and 

(Yy- Y) 

are not directly comparable. Perhaps 
one might compare the two errors by 
converting the error in log units at the 
mean value of the relation of Fig. 2. 
This, then, would be grossly comparable 
with the standard error of estimate 
from Fig. 1. For a mean of 119.3 and 
a standard error of 93.7 species, the 
range of the confidence interval at the 
mean is from 26 to 213 species for 
model 1. The comparable range for 
model 2, with a standard error of 0.331 
log units, is 56-255. The exclusion of 
one extreme value, Albemarle, changes 
the equation for model 1 from 
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y = 95.4 + .12X (SE 95) 

to 

y = 95.4 + .12X (SE 95) 

to 

y = 70.3 + .48X (SE 86). y = 70.3 + .48X (SE 86). 

The comparable change for model 2 
is from 

y = 28.6 X0?1 (SE 0.319) 

to 

y = 28.2 X?-839 (SE 0.332). 

Figure 1 also gives a good visual 
picture of why "Model 1 predicts floral 
richness for larger islands more ac- 
curately than it does for smaller is- 
lands." This is a result of the least 

squares fitting itself. The few larger 
islands receive much more weight than 
all the data for smaller islands. The two 
figures give an indication of why Xf is 

significant for model 2 but not for 
model 1. 

The expected relation of errors to 
the "'true" values may give some per- 
spective to the problem of choosing a 
model. Assume an island were observed 
to have 10 species and a "satisfactory 
guess" would be in the range of 5 to 
15 species, or ? 5 species. If a second 
island were observed to have 1000 
species, would a "satisfactory guess" 
need to fall between 995 and 1005 
species? This is the requirement of 
model 1. Probably, the proportional 
errors of model 2 would be preferable. 
If a guess of 6 to 17 is good enough 
for 10, then a guess of 600 to 1700 
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Fig. 1. Relation of species number to 
area, plotted to natural scales. 
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is good enough for 1000 species. (These 
are approximately equal log unit errors.) 

Statistics is a powerful tool for sort- 
ing out variables, if an underlying 
model is known. Statistics cannot find 
the model. The model depends upon 
the scientist and how he thinks the 
system reacts. I think model 2 is su- 
perior statistically to model 1. Perhaps 
"groups . . . previously studied by the 
Arrhenius approach (model 2) need to 
be examined by multiple regression 
analysis." However, before any such 
examination is made, the scientist must 
(i) state his assumptions, both physical 
and statistical; (ii) state his linear hy- 
pothesis and defend it before analysis 
(both models 1 and 2 are linear in the 
statistical sense); and (iii) use statistical 
analysis to test hypotheses, not to find 
them. 

D. R. DAWDY 
2350 Harvard Street, 
Palo Alto, California 
5 June 1964 

Dawdy fails to state explicitly that 
our study was a multifactorial analysis 
wherein was tested the idea that insular 
number of land plant species (Y) in the 
Galapagos Archipelago varies from 
island to island in such a way that 
Y depends upon several X's (area, ele- 
vation, isolation, and so forth) for its 
value. We compared multiple regression 
of Y on 5 X's by model one and model 
2, and concluded for multiple-not 
single-regression that the first model 
gives better predictions of Y. We noted 
in our report that area by model 2 
gives better predictions than by model 
1. This is the single-regression matter 
to which Dawdy addresses himself. 
Thus we are delighted to see his con- 
firmation and amplification in the first 
six paragraphs and figures of his com- 
ment of one of our several findings. 

Several of his points, nevertheless, 
require clarification: 

1) I am surprised that Dawdy con- 
siders our statement of use of the con- 
tributions to R2 of the X's "no exact 
statement of [our] test of 'goodness 
of fit'." R2 or the coefficient of multi- 
ple determination is the fraction of 
total sum of the squared deviations 
from the mean of Y which is attribut- 
able to regression (S91/1y2). As such 

its value varies from 0 to I or perfect 
prediction. It is widely used in statistics 
to compare the relative predicting pow- 
ers or "goodness of fit" for different 
models or estimating equations. For ex- 
ample, such values for the single-regres- 
sion, species-area problem here dis- 
cussed are as follows: By model 1, 
r2 (= coefficient of determination) for 
Y regressed on X is 0.33; by model 2, 
r2 for log Y on log X is 0.58. 

2) The regression line in Dawdy's 
Fig. 2 is labeled incorrectly. That 
"linear" line should be labeled log 
Y = 0.1456 + 0.331 log X. His desig- 
nation, y - 28.2 x?'"', represents a 
transformation to arithmetic values of 
the preceding equation, and gives in 
fact a "curvilinear" line fitting the Y 
points of his Fig. 1. Thus model 1 and 
model 2 are respectively linear and 
curvilinear in the "mathematical sense," 
if not in the "statistical sense." 

The fit of predictions (Y) of Y by 
model 2, although better than by model 
1, is not very good. And to compare 
the log-log plotting (without. conver- 
sions of the predicted, log Y values 
to their arithmetic counterparts) with 
the arithmetic-to-arithmetic one (with 
4/5 of the space above the X axis 
given to one large sample item) could 
be misleading. My Fig. 1 compares the 
prediction errors (Y minus Y) for spe- 
cies numbers regressed on area by 
both models. That neither is very good 
can readily be seen. (Close predictions 
would result in the error points or de- 
viations being restricted to the broken, 
zero line crossing the figure.) It was at 
this point in the preliminary work on 
our problem that we shifted from 
single to multiple regression. There we 
found R2 values of 0.84 and 0.67 for 
the respective multiple regressions of 
Y on the 5 X's and of log Y on the 5 
log X's. Since we were seeking evi- 
dence for environmental control of 
species abundance by the finding of 
environmental correlates of insular spe- 
cies numbers [furthermore, G. W. 
Snedecor (Statistical Methods, Iowa 
State College Press, Ames, ed. 5, 1957, 
p. 438) suggests not speculating about 
cause and effect unless R2 is above 
0.80], we concluded in favor of the 
higher R2 value (viz., model 1 in mul- 
tiple regression). 

3) Dawdy's stricture that the scien- 

Fig. 1. Prediction errors for species num- 
bers regressed on area. Error = Y - Y: 
0 for Y = 95,44 + 0.117 X where r - 
0.33; * for Y - 0.286 X"?'- where r2 
for log Y = 1.456 + 0.331 log X is 0.58. 

tist "must" use statistical analysis to 
test hypotheses, not to find them, is to 
me unacceptably typological. I think 
the majority of actively working scien- 
tists would agree that hypotheses are 
where one finds them. I see in our dis- 
agreement the old conflict between in- 
duction and deduction. Paraphrasing 
the writing of a recent commentator 
on the matter, I suggest that scientists 
steer a course whose path passes care- 
fully between the twin dangers of ac- 
cumulating only facts by induction 
and of resorting to excessive specula- 
tion without checks by observation and 
experimentation. 

Finally and since we are involved 
here in controversy, it is not inappro- 
priate for me to poke fun at myself 
and Dawdy by quoting John Kenneth 
Galbraith's view (Economics and the 
Art of Controversy, Vintage, New 
York, 1959, pp. 104-5) of the nature 
of controversy in another field of in- 
quiry: "Indeed, the intensity of the de- 
bate may be inversely related to the 
urgency of the questions involved.... 
We should on occasion get a larger 
perspective on the melee and on the 
weapons, tactics, and objectives. So 
viewed, some of the battles will doubt- 
less be shown to be very important. 
Some, it will be found, are being 
fought with blank cartridges for ground 
that has already been won in a war 
that is over." 

T. H. HAMILTON 
University of Texas, A ustin 
26 July 1964 
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