
pump which mixes the buffer solutions 
surrounding the two electrodes, thereby 
neutralizing changes in the pH or con- 
centration of the buffer as a result of 
electrode reactions (4). The heat de- 
veloped in the cell (5) by passage of 
the electric current is removed by cool- 
ing plates in the walls of the buffer 
chamber. The two electrodes are made 
of stainless steel, and their large area 
(10 X 10 cm) provides a reasonably 
uniform electric field through the face 
of the gel slab. The electrodes are 
placed in close proximity to the gel 
matrix and to the separating grid in 
order to decrease the heat load gener- 
ated within the apparatus by the pas- 
sage of the electric current. A relatively 
low voltage and high current are re- 
quired (25 v at 200 to 500 ma) 
(Fig. 1). 

There are certain necessary condi- 
tions and limitations for the apparatus 
to function effectively. First, the pro- 
teins must all migrate in the same di- 
rection through the gel and through 
the buffer solution. This, in effect, pre- 
cludes the use of starch gel as electro- 
phoresis matrix since some slow mov- 
ing components, such as y-globulin, 
which migrate toward the negative 
electrode in the starch gel matrix, 
migrate toward the positive electrode 
in the buffer solution. In such a case, 
the protein could never set up within 
the vertical channel the electroconvec- 
tion currents necessary to concentrate 
the protein in the collecting reservoir 
at the bottom. Presumably a cell could 
be designed with electroconvection 
channels on both faces of the gel 
matrix to accommodate both forward 
and retrograde migrating proteins, but 
the additional complications in the de- 
sign of such an elution cell seem to be 
greater than the useful applications 
such a cell would warrant. 

Second, the individual proteins com- 
prising the eluting zones must have a 
positive density increment in the buf- 
fer used. In other words, the protein- 
buffer solution must have a higher den- 
sity than the protein-free buffer. If 
this condition is not met the eluted pro- 
tein will tend to float to the top of the 
cell instead of descending by convection 
to the bottom. Again, it might be pos- 
sible to provide collecting reservoirs at 
the top of the elution cell to meet this 
difficulty, although the area of useful- 
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pass through the dialysis membrane 
used to form the base of the electro- 
convection channel. The usual Visking 
dialysis tubing effectively bars the pas- 
sage of proteins whose molecular 
weight is 20,000 or more, so that this 
is not a serious limitation in the appli- 
cations of the cell. 

An example illustrating the use of 
this apparatus is presented in Fig. 2. 
The sample consisted of an artificial 
mixture of five colored proteins and 
three dialyzable dyes. A section of the 
gel pattern before elution is shown 
placed on the separating grid in posi- 
tion for elution. The protein compon- 
ents, collected from another section 
of the original gel pattern, are visible 
in the collecting tubules, while the dye 
components, having dialyzed through 
the barrier membrane, were not concen- 
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trated in the tubules corresponding to 
these bands. The original photograph 
clearly shows in two colors the separa- 
tion of the two components on the left 
(closest to the origin) in the gel pattern. 
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Little is known concerning the chem- 
ical and biological reactions occurring 
in the emergence of resistance to ac- 
tinomycin D in any biological system 
susceptible to this antibiotic. Goldstein 
et al. (3) and Journey and Goldstein 
(4) characterized a HeLa line resist- 
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Fig. 1 (left). Uracil-2-C4 incorporation into B. subtilis strain 6015/S in the presence and 
absence of actinomycin D. Fig. 2 (right). Uracil-2-C4 incorporation into protoplasts 
of B. subtilis strain 6051/S in the presence and absence of actinomycin D. 
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Actinomycin Resistance in Bacillus subtilis 

Abstract. The incorporation of uracil-C', a precursor of cellular RNA, into 
whole cells of the sensitive parent strain Bacillus subtilis No. 6051 is completely 
inhibited by actinomycin D, whereas only partial inhibition of uracil-C' in- 
corporation occurs with actinomycin-resistant intact cells of B. subtilis strain II 
15. Incorporation of uracil-C"' into protoplasts of the resistant strain of B. subtilis 
is completely inhibited. The sensitivity of resistant-cell protoplasts to drug effect 
clearly supports the conclusion that actinomycin penetration is altered in resistant 
intact whole cells. Since other experiments have shown that the antibiotic is not 
broken down in the presence of resistant cells, resistance is considered to result 

from a change in cell permeability. 
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in the presence of resistant cells, re- 
sistance is considered to result from a 

change in cell permeability. 
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Morphogenetic Studies with 

Partially Synchronized Cultures 
of Carrot Embryos 

Abstract. Callus tissue, derived fromn 
petiole segments of the wild carrot and 
containing uiindifferentiated meristems, 
can be suspended min liquid nutrient 
media and passed through a series of 
sieves to separate the meristems by 
size. The small meristems of fairly uni- 
form size thus obtained will grow on 
defined media where their controlled 
differentiation into embryos can be 
studied. 

A simple method has been devised 
for studying morphogenetic problems 
through the use of partially synchro- 
nized cultures of embryos derived from 
somatic cells of the wild carrot, Dau- 
cus carota. Details of the embryogene- 
sis which occurs in callus tissue de- 
rived from petioles, roots, or stems cul- 
tured on simple defined media were de- 
scribed elsewhere (1). 

Segments of carrot petiole (2) cul- 
tured on an agar-solidified basal me- 
dium (3) plus adenine and 2,4-dichloro- 
phenoxyacetic acid (2,4-D) produce 
callus which contains many small, ap- 
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