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ological significance can be formed in 
the laboratory from mixtures of ex- 
tremely simple substances like methane, 
ammonia, and water. Geologists and 
geochemists examine ancient sedi- 
ments for fossil organisms and deter- 
mine the chemical nature of the im- 
prisoned organic matter (2-4). Earlier 
than about 600 million years ago 
well-defined morphological remains are 
scanty, and generally are difficult to 
relate conclusively to specific living 
things (5). A firm correlation between 
the morphological evidence and the 
organic matter present in the same rock 
would permit a systematic search for 
chemical evidence of early life in the 
ancient sediments. Certain classes of 
organic compounds-the alkanes (6), 
the long-chain fatty acids (7), and the 
porphyrin pigments (8)-show promise 
as biological markers since they are 
evidently stable for long periods of 
time under geologic conditions. These 
compounds are valid as biological mark- 
ers only insofar as they cannot be syn- 
thesized in significant proportions by 
abiogenic means. For this reason "prim- 
itive atmosphere" experiments play an 
important role. The range of compounds 
based on the isoprenoid subunit is par- 
ticularly useful, for here we have a high 
degree of structural specificity coupled 
with a widespread distribution in na- 
ture. Thus pristane (2,6,10,14-tetra- 
methylpentadecane) and other isopre- 
noid hydrocarbons have been isolated 
from crude petroleums of moderate 
ages (Mesozoic and Paleozoic) in con- 
centrations vastly greater than those 
anticipated for individual branched al- 
kanes in a thermally derived mixture 
(9). Pristane is a known constituent of 
living things-zooplankton (10), fish 
and whale oils (11), wool wax (12), 
and marine sponges (13)-but the orig- 
inal source of the mineralized material 
may be the phytol portion of chloro- 
phyll degraded either biogenically or 
abiogenically (9, 14). There is every 
prospect that the isoprenoid hydrocar- 
bons, and the related alcohols and acids, 
will be useful biological markers. 

We now report the isolation and 
identification of phytane (2,6,1,0,14- 
tetramethylhexadecane) and pristane in 
the oil which seeps in small quantities 
from the Precambrian Nonesuch shale 
in Michigan. This rock (15) is of 
Keweenawan age and is in the region 
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isolation by processing suitable model 
mixtures. Thus, the Linde molecular 
5 A sieve (composed of 1.6-mm pellets, 
dried at 200?C and 10-3 mm-Hg, and 
used at a ratio of 20:1 by weight to 
the alkanes) quantitatively removed 
(16) the normal isomers from a ben- 
zene solution of alkanes from tobacco 
wax (17); the analysis was performed 
by gas-liquid chromatography at 230?C 
(3 percent SE-30 silicone gum on Gas 
Chrom Z, 100-120 mesh, the column 
being 170 cm X 3 mm). Even after 
prolonged reflux lasting up to 72 hours, 
the 2-methyl and 3-methyl substituted 
n-paraffins (C25-C35) were quantita- 
tively retained in the solvent and 
the necessary solvent washings. A 
second sieving treatment of the 
hydrocarbons was found to be un- 
necessary. The same fractionation 
quantitatively removed n-heptacosane 
from a mixture containing cholestane, 
pristane, and squalane. In each case 
the n-alkanes were readily recovered 
from the sieve by heating in n-hexane 
or by dissolution of the sieve in dilute 
HF. 

In another experiment an oil shale 
(18) from the Green River Formation 
(Eocene age, about 60 X 106 years) at 
Rifle, Colorado, was extracted for sev- 
eral hours with n-hexane under re- 
flux and the extract placed on a washed 
activated alumina column (the particle 
size being 2 to 44 p). The initial hex- 
ane eluate contained only the alkane 
fraction which was then subjected to the 
sieving process, followed by gas-liquid 
chromatographic analysis (3 percent 
SE-30 column, programmed from 100? 
to 300?C at 6?C per minute). The dis- 
tribution of the n-alkanes closely par- 
alleled that reported for this shale by 
Cummins and Robinson (18), with the 
marked dominance of the odd-carbon 
number alkanes, especially C27, C2, and 
C31, so characteristic of most plants 
(19) and relatively young sediments 
(6). Again, we confirm these workers' 
prior findings (18) that the lower 
molecular weight range of the branched 
and cyclic alkane fraction is mainly 
composed of phytane, pristane, and 
other terpenoids, since gas-liquid 
chromatographic fractions collected in 
capillary tubes from 6-mm columns 
displayed the appropriate mass spectro- 
metric characteristics (20). Thus, the 
biological history of this Cenozoic 
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and from the presence of large propor- 
tions of isoprenoid alkanes. 
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the black viscous oil which oozes from 
the Precambrian Nonesuch shale (15) 
using the procedures described and 
found that the members of the n-alkane 
series range from C~i to about C35. The 
distribution reaches a maximum around 
Cio and there is a very slight, but quite 
definite, predominance of odd-num- 
bered members. The branched-cyclic 
fraction (2.5 g), which still contains 
small amounts of aromatic hydrocar- 
bon, is very complex, but is charac- 
terized by several prominent peaks in 
the region corresponding in retention 
time to that between n-C14 and n-Cis 
on the silicone gum column. We col- 
lected amounts of the order of a milli- 
gram for each of these peaks by suc- 
cessive sampling on a 6-mm column 
and then by rechromatographing these 
at 90?C upon a strongly polar sub- 
strate-5 percent tetracyanoethylated 
pentaerythritol on Gas-Chrom RA, 80- 
100 mesh, the column being 170 cm 
X 6 mm-that provided a particularly 
effective separation. Two of the frac- 
tions so obtained when chromato- 
graphed on a variety of substrates 
(Apiezon 'L', fluorosilicone QF-1, sili- 
cone gum SE-30, Carbowax-20M, 
and tetracyanoethylated pentaerythritol) 
gave single peaks of the same retention 
times as phytane and pristane. These 
identifications were then confirmed by 
direct comparison on the mass spectrom- 
eter (20). 

The mass spectrometric data on in- 
completely separated fractions show 
that other compounds with isoprenoid 
skeletons are present; these fractions 
may represent geologic breakdown 
products from the more abundant phy- 
tane and pristane. Studies on a capillary 
column (with Apiezon 'L', 45 m X 
0.25 mm at 170?C) of cuts taken from 
the packed columns show that the 
branched fraction is an extremely com- 
plex mixture: even so, the phytane and 
pristane comprise approximately 0.6 
and 1.2 percent, respectively, of the 
branched-cyclic fraction. 

If one accepts the presence of these 
hydrocarbons as evidence of life in 
Precambrian times, there remains the 
question of the relation between the 
oil and the rock. We believe that the 
oil is indigenous to the rock, since we 
have found an almost identical pat- 
tern for the normal and the branched- 
cyclic alkane fractions (about 3 mg 
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oil had been collected. No method for 
the dating of ancient organic matter 
exists as yet, so that some doubt must 
remain concerning the precise age of 
this oil; however, the geologic evidence 
(15) favors the viewpoint that the 
organic matter and the associated cop- 
per are sedimentary or early diagenetic 
in origin. 
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Shape of the Recorded Area in 
Precession Photographs and Its 
Application in Orienting Crystals 

Abstract. The equation of the perim- 
eter of the recorded area of zero-level 
precession photographs as a function of 
the orientation error is derived in polar 
coordinates. The angle between the 
tangent to the perimeter and the radius 
vector is also derived. How these rela- 
tions can be conveniently applied to de- 
termining the orientation error of a 
crystal mounted on the precession in- 
strument is discussed. 

The recorded region of a zero-level 
precession photograph is marked out 
by general-radiation streaks (1). When 
the crystal is properly oriented this 
shaded region is circular with its center 
at the location of the 000 reflection. If 
the crystal is somewhat misoriented the 
edges of the recorded region shift in the 
direction of the setting error. This is 
the basis for various methods of cor- 
recting an orientation error (1, 2, 3). 

The knowledge of the shape of the 
recorded area for precession photo- 
graphs made with a somewhat misori- 
ented crystal is in a confused state. 
Fisher (2) considers the area to coin- 
cide with a "circle of precession" on the 
side of error, but shortened on the op- 
posite side (2, p. 1039). Furthermore, 
although the feature is not discussed, 
a central region without a record is 
evident in his Fig. 34a. Evans (3) 
illustrates such a region in a drawing, 
but also without discussion and, as will 
be seen subsequently, the shapes of the 
bounding curves are misleading. 

In the first publication on the preces- 
sion method (1) the change in radius 
due to an orientation error was derived. 
When the law of sines is applied to the 
triangle OWJ of Fig. 13 (1, p. 24) of 
that article it is seen that 
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...X - sin (90? + T+ e) 
2 sin ( + e) sin (90? -_- 2s)' 

which can be solved for eii.ax to give 

sin 2 (7-+ c) 
e.ax cos (,+ 2E)' 

...X - sin (90? + T+ e) 
2 sin ( + e) sin (90? -_- 2s)' 

which can be solved for eii.ax to give 

sin 2 (7-+ c) 
e.ax cos (,+ 2E)' 

(1) (1) 

(2) (2) 

The maximum radius vector m.ax oc- 
curs when the phase of the precession 
motion brings the angle jg in the same 
direction as the error angle e. For pres- 
ent purposes let the phase T of the pre- 
cession cycle be measured from the 
position where the plane of F/ is parallel 
to the plane of e, the angles increasing 
in the same sense. In the general case 
the angular separation in the plane of 
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