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Geodesy by Satell 

Satellite data have added to knowledge of the ea 
size and shape, gravity field, and internal proce 

Robert R. N( 

Geodesy is a field of study with 
three main purposes: (i) to determine 
the size and shape (that is, the figure) 
of the earth; (ii) to locate points upon 
its surface; and (iii) to describe its 
gravity field at every point upon its sur- 
face. A satellite is a new tool in this 
ancient study, whose recorded history 
goes back more than two thousand 
years. 

Belief that the earth is a sphere was 
common among philosophers by the 
time of Aristotle, who gives 400,000 
stades as its circumference (1). Era- 
tosthenes is frequently credited with 
being the first man to measure the 
earth, but he cannot have been, since 
he lived a century later than Aristotle. 
However, his is the oldest recorded 
method (2). He was told that the sun 
at noon on Midsummer Day shone 
straight down a well at Syene, the mod- 
ern Aswan, and he measured the direc- 
tion of the sun at Alexandria at the 
time of this event to be 1/50 of a cir- 
cle from the vertical. Since the distance 
from Syene to Alexandria is 50 days' 
journey by camel caravan, the circum- 
ference of the earth, according to Era- 
tosthenes, is 2500 camel-days. 

Eratosthenes' "arc-measuring" meth- 
od (with better-calibrated instruments) 
is still one of the basic methods of 
"geometrical geodesy." Physical geod- 
esy, the other great branch of observa- 
tional geodesy, is not so old. Physical 
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mine the relative positions of the satel- 
lite and the observing stations, without 
knowing anything about the motion of 
the satellite. In my opinion, the oppor- 

lite tunities for making measurements of 
this sort are so limited, and the cumula- 
tion of errors is so great, that the first 

Lrth'S procedure is more effective. 

,sses. 
Representation of Gravity 

.Dwton Mathematical description of the grav- 

ity field is usually given in terms of 
the potential V. The potential varies 
from point to point, and thus specify- 

measurements of ing a point is a necessary part of speci- 
t have come into fying the potential. I shall specify a 
had conceived of point by giving its radius r from the 
ative force. The center of mass of the earth, its latitude 
physical geodesy 0 (6), and its longitude X. By the po- 
Richer (3), who tential at a point, written V(r, 0, A), 

t pendulum clock we mean the work required to carry a 
i Paris lost about unit mass from an infinite distance to 
near the equator. the point. All that matters in this defi- 
-on (4) computed nition is the point; we can carry the 
ion should cause mass by any path we choose, such as 
late spheroid, and along a radius. For a spherical earth, 
surements in test- the potential would be V(r, 0, p) -- 
can consider this - K/r. K is the product of the uni- 
-oretical geodesy. versal gravitational constant and the 
by physical geod- total mass of the earth, and is about 

re from sphericity 3.986 X 10T4 m'/sec2. A geophysicist 
recourse to geo- or astronomer would probably omit the 
the earth is not a minus sign in expressing the potential. 
ngth of a degree There are surfaces called level sur- 
latitude. The first faces, on which V does not change. 
ition in the length For a spherical earth (as opposed to 
d that the earth the actual earth, which is oblate and 
I, but the second bumpy), there would obviously be sur- 
I that it is oblate, faces of constant r-that is, spheres 
as definitive (5). concentric with the earth. If we move 

used as a tool of a mass from one point to any other 
it can be used in on a level surface, we do no work, so 
ashion. To use a the force exerted is perpendicular to 
geodesy, we ob- the surface at every point. But this 

t widely separated force is just the force to counteract the 
times, and deduce acceleration due to gravity, so the di- 
t the satellite by rection of gravity is also normal to the 
mn. This gives us level surface. 
vity, and also tells Let us consider two neighboring level 
he observing sta- surfaces a distance ds apart along the 
this procedure, we normal-that is, along the direction of 
ite simultaneously gravity. If dV is the difference be- 
gether and deter- tween the values of V on the surfaces, 
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it is therefore the work done in moving 
along ds while exerting the force - g, 
where g is the acceleration due to grav- 
ity. Hence, dV - g ds, or g = 
- dV/ ds, and if we know the function 
V(r, 0, ,), we can calculate the direc- 
tion and magnitude of g at every point. 
Thus, V(r, 0, (p) contains all of the 
information about gravity, and it is easi- 
er to manipulate mathematically than the 
acceleration g itself. For the spherical 
earth, gravity is directed along the ra- 
dius, so ds - dr, and 

g - - d(- K/r)/dr - - K/r2. 

For the actual earth, V is not sim- 

ply - K/ r. To describe V in the actual 
case, we resort to an analogy with a 
taut string. Suppose we could strike a 
string with a hammer and then sud- 
denly freeze it. The shape would look 
quite complicated, but it could always 
be resolved into simple sine waves 
called harmonics. One of these would 
have one full loop (half a wavelength) 
in the full length of the string, others 
would have 2, 3, .. , loops. Each 
would have its own amplitude, or maxi- 
mum displacement from equilibrium. 
If we figure out the shape of each 
wave, and add these shapes up, we get 
the shape of the actual wave. Each of 
the individual waves, or harmonics, is 
identified by an integer, which is the 
number of half-waves in the string. 

Now suppose we have a spherical 
earth uniformly covered with water and 
throw a large meteorite into it. After 
waiting a short time to let the waves 
spread over the surface, let us freeze 
the surface. Again we will have a com- 
plicated shape, but one that is also 
resolvable into individual harmonics, 
each with its individual amplitude. Each 
harmonic is identified by two integers, 
n and m. Integer n is the total number 
of full waves (not half-waves as in the 
case of the string) encountered in go- 
ing completely around the earth, along 
the great circle that will cross the maxi- 
mum number of waves for the particu- 
lar harmonic in question. Integer m is 
the number of undulations encountered 
in going around the equator. Obvi- 
ously, m can be any integer from 0 

through n, but it cannot exceed n. 
Let S.n" denote the mathematical func- 
tion that describes the form of one of 
these harmonics. 

In addition to its amplitude, we must 
tell one other thing about a harmonic. 
The wave can have any orientation 
about the earth's axis. We pick some 

arbitrary longitude-say, the longitude 
of a point on the equator at which the 
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displacement is maximum-and call it 

,km. Then the function S.n', the longi- 
tude n.," and an amplitude factor yet 
to be introduced suffice to describe any 
individual wave (7). If m = 0, the har- 
monic is called zonal; since there are 
no oscillations in a wave going around 
the equator, the zonal harmonics are 
symmetrical about the earth's axis. For 
these, there is no characteristic longi- 
tude Xk', and only the amplitude is 
needed. 

So far we have used these harmonics 
to describe the shape of an undulating 
surface. The surface of most interest 
in geodesy is the level surface that 
coincides with mean sea level over the 
oceans; it is called the geoid. If the 
geoid is not spherical, and thus con- 
tains harmonics, other level surfaces 
for the actual earth are not spherical 
either. Thus, if we move around on a 
spherical surface, we are continually 
changing from one level surface to an- 
other; in other words, V changes from 
point to point on a spherical surface. 
But if V is not constant on a spherical 
surface, it must contain undulations, or 
harmonics. The harmonics in the grav- 
ity potential are simply related to those 
in the geoid; in fact, they differ only 
in the numbers used to give the ampli- 
tudes. I shall use J,nt to denote the 
amplitudes of the harmonics in the 
gravity potential V. Further, I shall 
scale the amplitudes on the basis of the 
value for K/r at the equator, and I 
shall scale r on the basis of the earth's 
mean equatorial radius. Thus, the size 
of Jn"1 relative to unity tells us approxi- 
mately the importance of the corre- 
sponding harmonic. 

If we like, we can call - K/r a har- 
monic, and in mathematical formalism 
this is an advantage. The amplitude 
would be denoted by J0?, and in the 
system used here, J0? -- 1. Here it is 
simpler not to consider - K/r one of 
the harmonics, and I shall not do so. 

The foregoing discussion of the geoid 
would be correct if the earth were not 
rotating. For any element of the earth, 
including any particle that rotates with 
the earth, there is another force besides 
gravity, and that is the centrifugal force. 
The simplest way to handle the cen- 
trifugal force is to add the quantity 
- (o2p2/2 to the potential, where o) is 
the angular velocity of the earth and p 
is distance from the axis of rotation. 
The geoid is then more properly de- 
scribed as the surface on which the sum 
of the gravitational potential V and the 
centrifugal potential - o2p2/2 is con- 
stant. The earth's rotation is the largest 

cause of its departure from sphericity. 
A satellite does not rotate with the 

earth, and is not subject to this added 
potential. 

Measurements in physical geodesy 
are made with instruments that rotate 
with the earth. Therefore these instru- 
ments do not measure the acceleration 
arising from gravitational forces alone, 
but measure the acceleration resulting 
from gravitational plus centrifugal 
forces. When a physical geodesist uses 
the symbol g, or refers to the accelera- 
tion due to gravity, he generally means 
the acceleration resulting from both 
forces, whereas in the foregoing discus- 
sion I used the symbol g and the term 
gravity to mean the acceleration due 
solely to the gravitational force. 

The value for J20, the amplitude of 
the harmonic which results from the 
polar flattening, is about 10-~. All other 
amplitudes are of the order of 10-6 or 
less. That is, in looking for the other 
harmonics, we are working to an accu- 
racy approaching 1 part per million. 

Nature of Orbit Perturbations 

If there were no gravity harmonics 
for the earth-that is, if the potential 
were - K/ r-the orbit of a satellite 
would be an ellipse (8). Any depar- 
ture from an exactly elliptical orbit, 
or the force that produces this depar- 
ture, is called a perturbation. The con- 
text usually makes it clear whether the 
term perturbation refers to the motion 
or to the producing force. Every grav- 
ity harmonic produces a perturbation 
in the orbit of the satellite, and the 
nature of the perturbations depends 
upon the harmonic. 

Consider, first, how the perturbation 
depends upon the value of m, the num- 
ber of complete waves encountered in 
going around the equator. Since the 
earth rotates once per (sidereal) day 
under the satellite orbit, which is a 
curve almost stationary in space, the 
potential due to any harmonic S0,m re- 
peats itself, at any point on the orbit, 
every (24/m) hours. That is, the per- 
turbation due to the harmonic S,"0 is 
periodic, with period (24/m) hours, 
regardless of the value of n. Thus, it 
is easy to separate the harmonics with 
different m by the periods of the per- 
turbations they introduce into the orbit. 

For m - 0, the simple formula for 
the period yields infinity; that is, the 

perturbation always continues in the 
same direction. Such a perturbation is 
called secular. For m - 0 and even 
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values of n, the perturbation is indeed 
secular. For m = 0 and odd values of 
n, small effects make the perturbation 
periodic rather than secular, but the 
period is long, of the order of a thou- 
sand revolutions of the satellite. 

Now consider the dependence of the 
perturbation upon n. Let us take two 
points with the same r but lying in ex- 
actly opposite directions from the center 
of the earth. If n is even, the harmonic 
S&' is of the same magnitude and sign 
at these two points. If n is odd, the 
potential is of the same magnitude but 
of opposite sign at these points. This 
symmetry property is independent of 
the value of m. 

Because of this difference in sym- 
metry, which depends upon the even- 
ness or oddness of n, there is a profound 
difference in the effects of the respective 
harmonics on the satellite orbit. Har- 
monics with even values of n primarily 
affect the orientation of the orbit in 
space, and the phase of the motion 
(that is, the time at which the satellite 
will arrive at a particular point on the 
orbit). Harmonics with odd values of 
n primarily affect the eccentricity (that 
is, the departure of the orbit from a 
circle). 

Consider sequences of harmonics 
with the same m and with n differing 
by multiples of 2-for example (9), 
the sequences Sim, S3%, S5", . . . , or 
S2 , S4, SS,b . . . (the sequences start 
with the first value of n that is not less 
than m; possible first harmonics in a 
sequence are S?0, Si, IS, S22, S32, S4, 

. . .). Each member of one of these 
sequences gives perturbations, for a par- 
ticular orbit, that are almost indistin- 
guishable from the perturbations given 
by any other member of the same se- 
quence but that are readily distinguish- 
able from the perturbations given by 
any member of another sequence. 

To distinguish harmonics of the same 
sequence, we take advantage of the fact 
that perturbations produced by different 
harmonics in a sequence depend in 
different ways upon the orbit param- 
eters. Thus, each orbit studied yields 
an independent function of the har- 
monics in a given sequence, so that we 
can solve for as many harmonics in 
each sequence as we have orbits. By 
analyzing perturbations that are less 
significant than those described, it is 
possible, in principle, to solve for more 
harmonics, but usually with less reli- 
ability. A safer procedure is to use 
more orbits than harmonics, if possible. 

Another goal in geodesy, besides that 
of studying the gravity field, is the goal 
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of finding the geocentric coordinates of 
points on the earth's surface-that is, 
the coordinates referred to the center 
of mass as origin and to the spin axis 
as a preferred direction. Determining 
geocentric coordinates of the tracking 
stations is a necessary part of deter- 
mining the gravity field in satellite ge- 
odesy. To see why, let us imagine, as 
a simple example, that a station is 
tracking a satellite in an orbit that 
passes over the poles, and that the sta- 
tion is actually 1 kilometer north of 
where it is believed to be. When the 
satellite is traveling north, it appears to 
arrive over the station late, and when 
it is traveling south, it appears to 
arrive early. Thus, there seems to be 
a perturbation in the phase of the satel- 
lite motion qualitatively similar to the 
perturbation produced by some har- 
monics, in this case, by Sn2 where n is 
even. Fortunately, the effects of posi- 
tion errors and of the harmonics change 
in different ways with different orbits, 
and thus can be separated through the 
use of different orbits. Also, we are 
aided by the fact that the coordinate 
errors are fairly random from station to 
station, while the gravity perturbations 
are not. In principle, then, if we have 
a well-distributed set of stations, we can 
determine the number of gravity har- 
monics and simultaneously determine 
station coordinates, but the extra uncer- 
tainties introduced by errors for station 
coordinates make the use of a redun- 
dant number of orbits all the more 
desirable. 

Satellites and 

Measurement Methods 

Most of the tracking data used in 
satellite geodesy have come from three 
measurement methods: (i) radio inter- 
ferometry, (ii) a method based on 
optical angles, and (iii) a method based 
on Doppler shift (10). Two methods 
of measuring the range from a station 
to a satellite have been developed (11), 
but these have not been much used, so 
far. Radar tracking, though extensive, 
has been mostly intended for simply 
keeping up with the enormous number 
of artificial objects in orbit (12), and 
the data have not been used much for 
geodesy. 

The optical method has a precision 
of around 1 second of arc, or about 10 
meters at average ranges. Radio meth- 
ods are not as precise, being limited at 
present to a precision of 30 meters or 
more. However, the radio methods 

have a compensating advantage in that 
the measurements can be made at any 
time of day in any weather. Optical 
measurements can be made only when 
it is night at the station and when the 
sky is clear. Thus, the optical data al- 
ways have a biased distribution. 

The satellite 1962 /fll1, nicknamed 
Anna, was described in the press as the 
first geodetic satellite. This is correct 
only in a limited, though important, 
sense. The first satellite that yielded 
data useful in geodesy was the second 
satellite to be launched, 1957 /8, and the 
first satellite launched primarily for 
geodetic purposes was 1961 aol. 

The important point about 1962 fljul 
is that it incorporated equipment to 
allow tracking by three independent 
means-optical angles, radio Doppler 
shifts, and radio ranging. Use of inde- 
pendent methods has two advantages: 
It increases the volume of data, and, 
more importantly, it allows simultane- 
ous measurement by independent meth- 
ods. Such simultaneous measurement 
is necessary if we are to have valid 
estimates of measurement accuracy. 
(The estimates given earlier in this sec- 
tion are my personal estimates, based 
upon estimates of the foreseen sources 
of error and upon internal consistency.) 

The 1962 /flpl also carries equipment 
to allow measurement of another impor- 
tant quantity, the time. Since the posi- 
tion of a satellite is continuously chang- 
ing, time is an essential part of any 
data point, and the accuracy required 
in the measurement for time is quite 
stringent. If the accuracy of measuring 
position is dr and the satellite speed is 
v, the accuracy dt needed in measuring 
time in order not to distort the finding 
for position is dr/v or less. Since dr is 
10 meters (or possibly less) and v is 
about 7000 meters per second, dt < 
10/7000. Accuracy of 1 millisecond or 
better is a reasonable requirement. 

This exceeds the accuracy with which 
time can be measured on a world-wide 
basis by the use of standard time sig- 
nals, such as those from station WWV. 
To meet the need for accurate timing, 
the satellite carries a clock whose drift 
rate is less than 0.1 millisecond per 
day. This clock controls time signals 
of two types. It controls the times at 
which a flashing light, the one that is 
used in photography to yield optical 
data, is flashed. It also controls modula- 
tion pulses that are imposed on the 
radio transmissions from the satellite. 
By observing either of these types of 
time signal it is possible to measure 
time synchronously at any tracking sta- 
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Fig. 1. Satellite 1962 a/3l (Anna IB). (Left) Exterior view, 
(Right) Cutaway view, showing the main components. 
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showing the solar cells and the paints used for thermal control. 

tion with an accuracy of the order of 
0. I1 to 0.2 millisecond. 

Figure I shows a photograph of 1962 

j/3jl before launching, together with a 
cutaway drawing showing its main 
components. Figure 2 is a photograph 
of the same satellite after launching. 
Optical angle measurements are ob- 
tained from this and similar photo- 
graphs by interpolating the positions of 
the satellite between the positions of 
the stars. 

Unfortunately, failure of a compo- 
nent shortly after launching prevented 
use of the radio-ranging method. The 
optical system and the Doppler sys- 
tem are still (on 5 November 1963) 
functioning well, though on an ever- 
decreasing duty cycle, caused by radia- 
tion damage to the solar-cell power sup- 
ply. 

Data Analysis 

The method of analyzing tracking 
data to obtain geodetic results is famil- 
iar to anyone who has ever had to infer 
physical parameters from experimental 
data. The basic method applies to any 
type of tracking data or to any combi- 
nation of types. 

Tracking data consist of measure- 
ments of some quantity u at a set of 
times ti,. Let us suppose that u has been 
measured at N different times, so that 
i is an index running from 1 to N, and 
let us denote the body of tracking data 

by u (ti). In addition to the measure- 
ments, we must have a theory that 
gives u as a function of time and of 
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the parameters of the situation. In 
the geodetic situation the set of pa- 
rameters includes, as a minimum, 
the following: (i) the parameters that 
would fix the orbit if we knew the 
forces (there are six of these for each 
segment of an orbit used); (ii) the 
amplitudes of the gravity harmonics 
(there are as many of these as we feel 
justified in including; to work at an 
accuracy of 10 meters will probably 
require about 50); (iii) coordinates of 
the tracking stations (there are three 
for each station). There may also be 
other types of parameters needed, de- 
pending upon the situation. As an 
example, if a satellite is appreciably 
perturbed by the pressure of solar radia- 
tion, this perturbation depends upon 
the reflectance of the satellite, which is 
usually unknown, and hence must be 
included in the list of unknown param- 
eters. 

Let 0 denote the total set of orbit 
parameters needed, S the set of station 
coordinates, and G the set of gravity 
parameters. Let f(ti, 0, S, G) denote 
the function given by theory for cal- 
culating the measured quantity at time 
ti. We subtract the measurement u(ti) 
from the theoretical value f(ti, 0, S, 
G) for each time t, square the result, 
and find the average value of the 
square. This yields a function 

1 N 
F - ' [f(t, O,S, G)-u(t,)]2, 

which is no longer a function of the 
times but is a function of all of the 
parameters. The best estimate of the 
parameters is usually taken to be that 

set of values which gives F its minimum 
value. 

If we like, we can multiply each term 
inside the summation by a weighting 
factor Wi. The value for Wi should 
depend upon our a priori estimate of 
the accuracy of each data point. If we 
expect all the data to be equally accu- 
rate, we take all of the Wi values to be 
unity; if we expect some to be more 
accurate than others, we give WI for 
the "more accurate" data points a larger 
value. If the WI values are not unity, 
we replace the N in the denominator 
in front of the summation by S Wi, 
summed over all i. 

Function F is such a complicated 
function that it is not possible to find 
an explicit formula for the best esti- 
mate-that is, the values which give F 
its minimum value. Instead, it is nec- 
essary to proceed by iterations. We 
start with some estimated values of the 
parameters and compute F and all of 
its derivatives for the estimated values. 
From these calculations we make a new 
estimate of the parameters, and we re- 
peat this process until no further sig- 
riificant improvement can be made in 
the value of F. 

Nature of the Results 

Although satellite geodesy is only 6 
years old, it is old enough to have a 
history that can be divided into three 
eras. These eras, which are not sharply 
divided, are characterized by levels of 
difficulty in finding and analyzing orbit 
perturbations. 
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The first era begins with the early 
satellite launchings and continues to 
mid-1959. In it, the truly secular per- 
turbations are measured and ana- 
lyzed. These are obviously the easiest 
perturbations to detect, because, stead- 
ily increasing in size, they become 
larger than any apparent perturbations 
likely to result from errors of measure- 
ment. They arise from the harmonics 
with n even and m = 0 (the even zonal 
harmonics). The first significant result 
(13) was the discovery that the earth's 
flattening (proportional to J2?) differs 
by about ?/2 percent from the previ- 
ously accepted value. Work on these 
perturbations still continues; the most 
elaborate analysis of them is probably 
a recent one by King-Hele, Cook, and 
Rees (14), who analyzed this sequence 
of harmonics through J12? (15). 

The second era begins with the an- 
nouncement by O'Keefe, Eckels, and 
Squires (16) of the "pear-shaped" term 
(J;?). It is characterized by emphasis 
on the harmonics with n odd and m = 
0 (odd zonal harmonics). After the 
even zonal harmonics, these are the 
easiest to find, because their perturba- 
tions, although oscillatory, have ampli- 
tudes of several kilometers. This se- 
quence of harmonics has been ana- 
lyzed through JLo by Kozai (17) and, 

more recently, by Guier and me (18). 
The third era saw the introduction 

of nonzonal harmonics (m ~ 0) and 
the simultaneous refinement of station 
coordinates. The first such harmonic 
used was J22 (ellipticity of the equator), 
first estimated from satellite data by 
Iszak (19) and shortly afterward, by 
me (20). Estimation of these harmon- 
ics has been carried through all those 
with n = 4 by several groups of work- 
ers (21), along with determination of 
station coordinates. The average change 
in station coordinates required by satel- 
lite data is of the order of 500 meters. 
Kaula (22) has also estimated the har- 
monics through n - 8 for all m, by 
combining satellite data with surface 
measurements. 

Analysis of all these parameters is 
continuing. Different groups obtain dif- 
ferent answers, because they work with 
different satellites, different station con- 
figurations, different types of tracking 
data, and different distributions of data. 
In spite of all these differences, it is en- 
couraging to see the results converging. 
The level of disagreement is about I to 
2 X 10-7 for the zonal harmonics and 
and about 5 X 10-7 for the nonzonal 
ones. 

Only the specialist is interested in 
tables of the harmonics, and I shall not 

give such a table. It is more interest- 
ing, and more significant, to describe 
the shape of the geoid as computed 
from the satellite results. 

The dominant departure from sphe- 
ricity is the flattening, resulting from 
J20. The flattening is about 1 part in 
298.2-that is, the difference between 
the polar and the mean equatorial ra- 
dius is 6378.2 (the mean equatorial 
radius) divided by 298.2, or about 
21.39 kilometers. It is convenient to 
describe the remaining features of the 
geoid by reference to an ellipsoid of 
revolution having this flattening. 

Because only harmonics with n < 4 
have yet been determined, the geoid 
computed from satellite data does not 
have a complicated structure. Kaula 
(23) has computed a geoid for each of 
the principal gravity determinations 
from satellite data and finds that the 
geoids so computed have certain im- 
portant features in common. Relative 
to the flattened ellipsoid, the geoid 
seems to be characterized by having 
isolated hills and bowls, rather than, 
say, long ridges and valleys. 

There are four hills, of average 
height about 40 meters. These are 
found in the western Mediterranean 
or in northwest Africa; near New Guin- 
ea; near or to the west of the "waist" 

Fig. 2. Enlargement of photographic plate made during the strobe light test on 2 November 1962 to check the Air Force Cambridge Research Laboratories' optical system on Anna. The satellite was photographed at 0350 hours E.S.T., as it crossed the Boston area, by a BC-4, 300-mm FL camera located at Aberdeen, Maryland. The images on the camera plate averaged 50 to 55 microns in diameter. [Photograph by Coast and Geodetic Survey team; reproduced courtesy of Air Force Cambridge Research Laboratories, Bedford, Massachusetts] 
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of South America; and between south- 
ern Africa and Antarctica. Likewise, 
there are four bowls, of the same aver- 
age depth. These are found near the 
tip of India, near Bermuda, between 
Hawaii and Japan, and near the Ross 
Sea off Antarctica. 

Significance of the Results 

A satellite is a new measuring tool 
in geodesy. Its greatest significance 
is that it gives us results which earlier 
tools had not given. 

The type of gravity result that satel- 
lites can give most easily has already 
been described-namely, the harmon- 
ics with small values of n. These are 
equivalent to features in the geoid with 
continental dimensions. To study such 
features through surface measurement 
is difficult, because this requires accu- 
rate correlation of measurements over 
great distances. For harmonics with 
large values of n the situation is ex- 
actly the reverse. These harmonics give 
rise to fluctuations in gravity as large 
as those from harmonics with small n, 
but the fluctuations are of short range. 
These can be easily measured on the 
ground, but they hardly affect a satel- 
lite, which is necessarily a great dis- 
tance away. Thus, surface and satellite 
geodesy neatly complement each other. 

Satellites can also give accurate rela- 
tive positions between points separated 
by oceans. Over small distances (less 
than the width of a continent) they do 
not give relative positions as accurately 
as surface measurements can, when the 
terrain is favorable for making such 
measurements. Over very difficult ter- 
rain, as in Antarctica, relative position- 
ing by satellite may well be more accu- 
rate. 

Accurate description of the geoid and 
of the earth's gravity field is important 
not only for accurate charting of the 
earth but also for learning something 
about the interior of the earth. Per- 
haps the most startling finding from 
satellite data is that the earth is not in 
hydrostatic equilibrium and departs 
from equilibrium by an amount that 
apparently exceeds the strength of its 
materials. 

One theory that attempts to explain 
this departure from equilibruim is the 
theory that there are large convection 
currents in the mantle, the layer of the 
earth that extends from about the mid- 
point of the earth's radius to just be- 
neath the surface. This theory predicts 
that harmonics with n = 5 should be 
the largest. There are not enough satel- 
lite data yet to make a definite test of 
this prediction, but there should be 
within a few years. 

An interesting extension of the con- 
vection theory is the continental-drift 
(24) hypothesis, which attributes the 
distribution of the continents to the 
forces arising from convection. Ac- 
cording to the hypothesis, the geoid 
should have long ridges and valleys. 
Moreover, the continents should be 
over the low places (valleys) of the 
geoid and the oceans over the high. 
The satellite results described earlier 
contradict these conclusions of the drift 
hypothesis. While the picture of the 
geoid will change considerably as addi- 
tional results are obtained, I do not 
believe that it will change enough to 
come into agreement with drift hypoth- 
esis. Thus, the satellite results are an 
apparent obstacle to accepting the drift 
hypothesis, at least in its present form. 

In summary, geodesy by satellite has 
already contributed greatly to our 
knowledge of the earth's figure, of its 
gravity field, and of processes that go 
on inside it. The future should see an 
increase in the application of satellite 
results in these fields. 
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