
first excursion into the field. Figure 3 
shows the pulses received at 50 Mcy/sec 
from another cloud, in this case either 
more active or closer to the aircraft. 
Figure 4 shows, in addition, the tem- 
perature and potential gradient records 
for the same period. The pulses re- 
ceived at both 30 and 50 Mcy/sec 
emanated from clouds whose total ex- 
istence was in an environment where 
temperatures were several degrees 
above 0?C. Thus some sort of electri- 
fication is established for warm clouds 
involving the extremely rapid re- 
arrangement of charge required for the 
production of the observed electro- 
magnetic emission. 

In addition to making these measure- 
ments, the audio output derived from 
the higher frequency emission was mon- 
itored. From the audio response, the 
observer could learn that the cloud 
under study was the source of the radio 
signals received because of the in- 
crease or decrease in the rate and in- 
tensity of the pulses as the aircraft 
approached or receded from a cloud. 
In regions of strong electric field near 
a cloud, the cloud noise was replaced by 
corona noise from points of the air- 
craft or from the antennae tips. That 
this noise is distinctly different from the 
noise of the cloud can be seen by com- 
parison of Figs. 1 or 3 with Fig. 5. This 
difference, along with the recording of 
a strong electric field, should provide 
positive evidence of corona and the 
interpretation of spurious radio noise. 

The signals at 30 and 50 Mcy/sec 
not associated with lightning or air- 
craft corona were absent in the vicinity 
of both mature thunderstorms and the 
smaller clouds that had reached the 
peak of their growth and had started 
to evaporate. The intermittent nature 
and short duration of these pulses, as 
seen in Figs. 1 and 3, suggest the ex- 
istence of many microdischarges in 
clouds whose temperatures are entirely 
above 0?C and therefore give evidence 
of growing electrification without the 
presence of the ice phase. The growth 
of the electrification in these clouds 
may be associated with the mechanism 
responsible for the observed radio emis- 
sion in discrete pulses. If this is true, 
the electrification process, at least of 
warm clouds, may be related to the 
smaller scale turbulent and cellular 
motions in the clouds, either through 
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duce the electromagnetic emissions ob- 
served. Thus the process of cloud elec- 
trification, at least in warm clouds, may 
include an electrification mechanism 
quite different from any so far proposed. 

J. DOYNE SARTOR 

National Center for Atmospheric 
Research, Boulder, Colorado 
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Abstract. Radiocarbon dates suggest 
a total time spread of 550 years, from 
about 2300 to 1750 B.C., for the Harap- 
pa culture. 

The possibility of dating Harappa 
culture on the basis of written evidence 
is as yet precluded by our present in- 
ability to decipher the Indus script. The 
date bracket generally accepted as being 
safe (1, 2), about 2500 to 1500 B.C., 
is based mainly upon Gadd's classical 
paper (3) on seals of the Indus type 
found in Mesopotamia. With the avail- 
ability of carbon-14 dates for Damb 
Sadaat, a site showing Harappan con- 
tact, Fairservis (4) showed that the 
earliest date for Harappa culture was 
about 2100 B.C. Although at that time 
he retained the total span of about 
1000 years, he later suggested a much 
shorter bracket on anthropological 
considerations (5). 

In recent years a large number of 
carbon-14 dates have become available 
for some of the important Harappan 
and allied sites. An analysis of this 
new evidence strongly suggests a shorter 
Harappan chronology. I now propose 
a maximum date bracket of about 2300 
to 1750 B.C. for the total time spread 
of Harappa culture. This shorter 
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about 2100 B.C. Although at that time 
he retained the total span of about 
1000 years, he later suggested a much 
shorter bracket on anthropological 
considerations (5). 

In recent years a large number of 
carbon-14 dates have become available 
for some of the important Harappan 
and allied sites. An analysis of this 
new evidence strongly suggests a shorter 
Harappan chronology. I now propose 
a maximum date bracket of about 2300 
to 1750 B.C. for the total time spread 
of Harappa culture. This shorter 
bracket is not contradictory to the 
archeological evidence. 

Radiocarbon dates for three main 
Harappa sites-Mohenjodaro, Kaliban- 
gan, and Lothal-and three allied sites 
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-Damb Sadaat, Kot Diji, and Niai 
Buthi-are given in Table 1. The time 
brackets discussed in this report are 
based on 5730 ? 40 years as being the 
value of the half-life of radiocarbon. 

The main Harappan sites from which 
samples of middle and late levels have 
been dated are Kalibangan (Rajasthan) 
and Lothal (Saurashtra). Only one 
sample representing upper levels of 
Mohenjodaro has yet been dated; un- 
fortunately, no dates are available for 
Harappa. All the relevant radiocarbon 
dates are plotted in Fig. 1. The end of 
Harappa culture is easily determined 
from the available dates. A cross-check 
on the beginning of the culture is avail- 
able from dates for Damb Sadaat and 
Kot Diji. Niai Buthi probably provides 
a check for the date of early Harappa 
culture. 

The mean dates for the upper levels 
of Kalibangan and Lothal, based on 
samples TF-25 and TF-150, and TF-23 
and TF-19, are 1960 ?- 75 and 1840 
-- 85 B.C., respectively (6). These have 
to be compared with the single date 
for the upper level of Mohenjodaro 
(TF-75) of 1755 - 115 B.C. The three 
dates are seen to be consistent with a 
mean date of 1880 - 50 B.C. for the 
end of Harappa culture at these sites. 
However, since Mohenjodaro was prob- 
ably one of the most important Harap- 
pan seats, the culture may have con- 
tinued longer there than at Kalibangan 
and Lothal. In view of this, we con- 
sider 1750 B.C. as a probable date for 
the end of Harappa culture. This esti- 
mate is also well supported by the 
radiocarbon dates available for several 
post-Harappan Chalcolithic cultures in 
India (7). 

The earliest dates for Kalibangan 
and Lothal have to be based on an 
extrapolation since the lowermost levels 
have not been dated. However, Fig. 1 
shows that safe limits for the begin- 
ning of Harappa culture at these sites 
can be obtained easily since all the 
upper levels have been dated. Con- 
sidering the stratigraphic divisions, we 
conclude that the Harappa culture at 
Kalibangan and Lothal started not 
earlier than 75 and 150 years, respec- 
tively, before the lowermost levels for 
which radiocarbon dates have been 
obtained. 
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to be compared with the single date 
for the upper level of Mohenjodaro 
(TF-75) of 1755 - 115 B.C. The three 
dates are seen to be consistent with a 
mean date of 1880 - 50 B.C. for the 
end of Harappa culture at these sites. 
However, since Mohenjodaro was prob- 
ably one of the most important Harap- 
pan seats, the culture may have con- 
tinued longer there than at Kalibangan 
and Lothal. In view of this, we con- 
sider 1750 B.C. as a probable date for 
the end of Harappa culture. This esti- 
mate is also well supported by the 
radiocarbon dates available for several 
post-Harappan Chalcolithic cultures in 
India (7). 

The earliest dates for Kalibangan 
and Lothal have to be based on an 
extrapolation since the lowermost levels 
have not been dated. However, Fig. 1 
shows that safe limits for the begin- 
ning of Harappa culture at these sites 
can be obtained easily since all the 
upper levels have been dated. Con- 
sidering the stratigraphic divisions, we 
conclude that the Harappa culture at 
Kalibangan and Lothal started not 
earlier than 75 and 150 years, respec- 
tively, before the lowermost levels for 
which radiocarbon dates have been 
obtained. 

The mean dates for the lowermost 
dated levels of Kalibangan and Lothal, 
based on samples TF-147 and TF-145, 
and TF-22, TF-27, and TF-26, are 
2040 - 75 and 2000 ?- 70 B.C., re- 
spectively. Taking one standard devia- 
tion on the mean of the earliest and 
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latest dates (Table 1), so as to obtain a 
maximum difference, and considering 
the extension limits of 75 and 150 
years as discussed previously, we ob- 
tain for the maximum time interval, 
values of 250 and 300 years for Kali- 
bangan and Lothal, respectively. 

For Damb Sadaat, five carbon-14 
dates are available, four of which are 
for period II (DS-II) which, on the 
basis of archeological evidence, pro- 
vides the anterior limit for the begin- 
ning of Harappa culture. These dates 
are not inconsistent; however, since the 
errors on L-180C, L-180E, and P-522 
are very large, we have considered the 
date for sample P-523 of 2200 ? 76 
B.C. to be more important. Taking one 
standard deviation on this date, a safe 
estimate for the beginning of the 
Harappa culture is obtained as 2275 
B.C. For Kot Diji, we have four in- 
ternally consistant radiocarbon dates 
for the pre-Harappan culture. Archeo- 
logical evidence shows that the de- 
stroyers of this culture were Early 
Harappans (8). For the uppermost 
levels, representing pre-Harappan cul- 
ture, we have a date of 2100 ?+ 138 
B.C. for P-195. A safe estimate for the 
Early Harappans who invaded the site 

Table 1. Radiocarbon dates (B.c.) used in this 
paper for reconstructing the Harappan chro- 
nology. 

Radio- 
Station carbon 
index date Period 
No. (years 

B.C.) 

Damb Sadact 
L-180B (10) 2320 DSI 
L-180C (10) 2220 DSII 
L-180E (10) 2220 DSII 
P-523 (11) 2200 DSII 
P-522 (11) 2550 DSII 

Kalibangan 
P-481 (11) 2050 Late (mid ?) 
TF-25 (12) 2090 Late 
TF-150 (13) 1910 Late Harappan 
TF-139 (13) 1930 Middle Harappan 
TF-151 (13) 1960 Middle Harappan 
TF-147 (13) 2030 Lower Middle 
TF-145 (13) 2050 Lower Middle 

Kot Diji 
P-195 (14) 2100 Late Kot Diji I 
P-180 (14) 2250 Middle Kot Diji I 
P-179 (14) 2330 Middle Kot Diji I 
P-196 (14) 2600 Early Kot Diji I 

Lothal 
TF-23 (12) 1865 Phase V A 
TF-19 (12) 1800 Phase V A 
TF-29 (12) 1895 Phase IV A 
TF-22 (12) 2010 Phase III B 
TF-27 (12) 2000 Phase III B 
TF-26 (12) 2000 Phase III B 

Mohenjodaro 
TF-75 (13) 1755 Late 

Niai Buthi 
P-478 (11) 1900 Kulli 
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is similarly obtained as 2238 B.C., 
taking one standard deviation on the 
date 2100 B.C. 

The various aforementioned radio- 
carbon dates for the main and allied 
Harappan sites lead to a consistent 
time bracket. First, a consistent limit 
of 1750 B.C. for the end of 
Harappa culture emerges from the 
carbon-14 dates for Mohenjodaro, Kali- 
bangan and Lothal, which antedates the 
post-Harappan Chalcolithic sites. The 
earliest dates for the Harappa culture 
at Kalibangan and Lothal, and Damb 
Sadaat and Kot Diji are 2200 and 
2250 B.C., respectively, which are also 
consistent within the errors of dating. 
As a safe limit we have therefore 
adopted 2300 B.C. as the date for the 
beginning of Harappa culture. This cor- 
responds to a total time span of about 
550 years. The time spans at Kaliban- 
gan and Lothal were deduced to be 250 
and 300 years, respectively. Consider- 
ing that the period of 550 years (2300 
to 1750 B.C.) corresponds to an extreme 
time bracket, it cannot be said definitely 
as yet that the Harappa culture was 
shorter lived at these sites. The carbon- 
14 dates and archeological evidence 
for Harappan sites will be discussed 
in detail by Agrawal (7). 

The proposed date bracket of about 
2300 to 1750 B.C. is certainly con- 
siderably shorter than the traditionally 
accepted bracket of about 2500 to 1500 
B.C. But if we critically examine the 
latter estimate for the Harappan chro- 
nology we find that, on archeological 
considerations also, it is larger than 
warranted. 

First, the whole chronology is based 
mainly on a dozen seals of the Indus 
type which were found in Iraq (3), in 
some sort of datable contexts in old 
excavations at a time when scientific 
stratigraphy was not practiced. Sec- 

pre-Harappan cultures. 

ond, even this evidence is too meager 
to justify the enlargement of the 
bracket to a millennium. Considering 
these facts, Wheeler (9) stated that "the 
ends of the bracket are insecurely 
dated." Piggot (1) also concedes that 
"the only close point of contact [of 
Harappa culture] with the West . . is 
between years 2300 and 2000 B.c." In 
a recent paper, Fairservis (5) says, "I 
am not convinced that the Harappan 
of Sind at least represents an occupa- 
tion by that culture of anything close 
to the thousand year span which is 
accepted at present . . . I would 
expect that it was nearer 500 years." 

The foregoing discussion shows the 
attempts of the archeologists, although 
with some hesitation, to propose a 
shorter chronology for the Harappans. 
Now, on the basis of radiocarbon dates, 
one can assert a shorter date bracket of 
about 2300 to 1750 B.C. for the total 
time span of Harappa culture. 

D. P. AGRAWAL 
Tata Institute of Fundamental Research, 
Colaba, Bombay 5, India 
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