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Identity of Tarichatoxin 

and Tetrodotoxin 

Abstract. Tarichatoxin (CnH17NS08), 

a potent neurotoxin recently isolated in 
pure form from the eggs of the Cali- 
fornia newt, Taricha torosa, has been 
found to be identical to tetrodotoxin 
from the ovaries of Sphoeroides ru- 
bripes, the Japanese Fugu or puffer 
fish. As yet this substance has been 
detected only in a single family of fish, 
Tetraodontidae, and in a single family 
of amphibia, Salamandridae. 

A remarkable similarity has been 
noted already between the chemical (1) 
and physiological (2) properties of ta- 
richatoxin isolated from the eggs of the 
California newt Taricha torosa and 
tetrodotoxin (3), which was first iso- 
lated in crystalline form in 1950 by 
Yokoo and Morosawa (4) from the 
ovaries of a species of Japanese puffer 
fish or globe fish, Sphoeroides rubripes. 
We have now carried out a direct com- 
parison of these two substances in their 
crystalline form and find them to be 
indistinguishable. Furthermore, we find 
no difference in the properties of two 
crystalline acetates which have been 
prepared both from tarichatoxin (5) 
and tetrodotoxin. 

In addition to the close similarity in 
pharmacological properties already 
noted (2), we find that a massive dose 
(crude toxin equivalent to as much as 
1000 lzg of pure material per kilogram 
of body weight) of either tarichatoxin or 
tetrodotoxin injected intraperitoneally 
into Taricha fails to paralyze or kill 
these animals. On the other hand, mice, 
frogs (Rana pipiens), gold fish, and tiger 
salamanders (Ambystoma) are killed by 
far smaller doses of the two toxins. The 
LDso in mice is about 10 ptg/kg for 
both toxins with intraperitoneal admin- 
istration. Tarichatoxin blocked the ac- 
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parison of these two substances in their 
crystalline form and find them to be 
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no difference in the properties of two 
crystalline acetates which have been 
prepared both from tarichatoxin (5) 
and tetrodotoxin. 

In addition to the close similarity in 
pharmacological properties already 
noted (2), we find that a massive dose 
(crude toxin equivalent to as much as 
1000 lzg of pure material per kilogram 
of body weight) of either tarichatoxin or 
tetrodotoxin injected intraperitoneally 
into Taricha fails to paralyze or kill 
these animals. On the other hand, mice, 
frogs (Rana pipiens), gold fish, and tiger 
salamanders (Ambystoma) are killed by 
far smaller doses of the two toxins. The 
LDso in mice is about 10 ptg/kg for 
both toxins with intraperitoneal admin- 
istration. Tarichatoxin blocked the ac- 
tion potential of desheathed frog nerves 
in a few minutes when applied in con- 
centrations of 1 to 10 atg/lit. When sci- 
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atic nerves from Taricha granulosa 
were desheathed in the same way, con- 
centrations of either tarichatoxin or 
tetrodotoxin as high as 30,000 /tg/lit. 
produced only partial block after 20 to 
30 minutes. 

This unique insensitivity of the newt 
(Taricha) to toxin from the puffer fish 
(Sphoeroides) shows that in the newt 
tarichatoxin and tetrodotoxin cannot 
be distinguished and reinforces the con- 
clusion that the two toxins are iden- 
tical. 

The chemical and physical evidence 
for identity rests on the nuclear mag- 
netic resonance spectra, infrared spec- 
tra, ultraviolet spectra, mass spectra, 
and optical rotation of the two toxins 
and their acetate derivatives, as well as 
on their chromatographic behavior on 
thin-layer chromatography with several 
solvent systems. 

Tetrodotoxin has been reported to 
occur only in fish of the family Tetra- 
odontidae (and possibly in some close- 
ly related species), while we have thus 
far found tarichatoxin only in Sala- 
mandridae and not in salamanders of 
other families. This occurrence of iden- 
tical toxins only in completely unre- 
lated families of two classes of animals 
is a most remarkable biogenetic fact. 

Tarichatoxin, isolated as previously 
described (1) from the eggs of Taricha 
torosa, was brought to a high state of 
purity as indicated by the appearance 
of a single spot, when tested by thin- 
layer chromatography (Merck silica gel 
G, 96 percent ethanol and 4 percent 
acetic acid) and as indicated by a sub- 
cutaneous toxicity in mice of approxi- 
mately 7000 mouse units per milligram 
(1, 5, 6). Final purification was accom- 
plished by bubbling carbon dioxide 
through a water suspension of the toxin 
until solution was essentially complete. 
This solution (approximately 0.1 per- 
cent in toxin) was centrifuged and the 
supernatant was allowed to stand in a 
centrifuge tube at room temperature 
in a closed vessel over aqueous 0.01N 
ammonium hydroxide. The toxin crys- 
tallized near the surface of the solution. 
The nuclear magnetic resonance spec- 
tra of a sample of tarichatoxin 
(28 mg dissolved in 0.30 ml of deu- 
terium oxide and acidified with 0.02 
ml of perdeuteroacetic acid) and of a 
sample of tetrodotoxin furnished by K. 
Tsuda and purified in the same way 
were identical at both 60 and 100 mcy/ 
sec. The rotation [aoD2, -7.8 ? 1.0 
(c =3.33, D20, D3CCOOD) and [aM',25 
-5.0 ? 1.0 (c 7.5, D20, D3CCOOD) 
on two different determinations was 
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Fig. 1. Infrared spectra of tetrodotoxin and tarichatoxin. 

close to that reported (7) for tetrodo- 
toxin [a]D25, -8.64? (c = 8.55, dilute 
acetic acid), and the infrared spectra, 
taken in a KBr pellet, were as previ- 
ously reported (1, 8, 9) and were super- 
posable (Fig. 1). Both toxins showed 
only end absorption in the ultraviolet 
region down to 200 m/t when the solu- 
tions were freshly prepared (0.01N 
acetic acid) and the spectra were taken 
immediately. Both toxins began to 
darken at approximately 220?C and 
charred without melting at higher tem- 
peratures; they were not volatile enough 
to give meaningful mass-spectral data 
even with direct vaporization into the 
ion beam (10). Samples of the two 
toxins had the same behavior on thin- 
layer chromatography on silica gel with 
four different solvent systems, 4 per- 
cent acetic acid in ethanol; butanol, 
acetic acid, water (50:3:10); 70 per- 
cent collidine in water; phenol, ammo- 
nium hydroxide, and water (13:1.8:22). 

Either tarichatoxin or tetrodotoxin 
(11), upon treatment with acetic an- 
hydride and pyridine at 80?C for 20 
hours, gave a mixture of acetates which 
was purified by chromatography on a 
silicic acid column with chloroform 
progressively enriched in methanol. The 
first acetate to be eluted-mp 188.5?- 
191.5?C; [a]D80, +15.8? (c = 0.39 
CHCl); AmaxH20 236 m, (e- 9100), 
210 m, (e = 8750)-was a heptaace- 
tate as shown by its nuclear magnetic 
resonance spectrum, mass spectrum 
(parent ion peak m/e = 595), and analy- 
sis. The second acetate to be eluted-mp 
205.50-207oC; X ?max2 235 my (E = 
14,000), was a pentaacetate as shown 
by its nuclear magnetic resonance spec- 
trum and mass spectrum (parent ion 
peak m/e = 51 1). Neither the hepta- 
acetate nor the pentaacetate was com- 
pletely stable to crystallization. A third 
acetate precipitated from the mother 
liquors upon standing. We found this 
acetate only after K. Tsuda in pri- 
vate correspondence pointed out to us 
its method of generation. This acetate is 

insoluble in methanol, does not melt 
but begins to darken at 215?C, and 
does not absorb in the ultraviolet re- 
gion above 220 mjA; from its mass spec- 
trum (parent ion peak m/e 368) and 
NMR spectrum it is clearly a diace- 
tate. From our examination of these 
data it seems conclusive that taricha- 
toxin and tetrodotoxin yield identical 
acetate derivatives, and these toxins 
are indeed the same chemical substance. 
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