
duction, but with a terrestrial K/U 
ratio this corresponds to a uranium 
concentration of 3.3 X 10-8 g/g. If the 
integrated heat production for a chon- 
dritic earth is a limit in earth heat bal- 
ance models, then a mantle and crust 
with a uranium concentration of 5.2 X 
10-8 g/g and a terrestrial K/U ratio 
is permissible. This range in uranium 
concentration of from 3.3 X 10-8 g/g 
to 5.2 X 10-8 g/g is consistent with the 
values estimated by Hoyle and Fowler 
(1) for solar system nucleosynthetic 
material. This agreement of course 
cannot be taken as direct evidence that 
the earth is composed of unfraction- 
ated solar system material. 

The relative contribution of K40 to 
the heat production is drastically dif- 
ferent for chondritic material and for 
material with a terrestrial K/U ratio. 
At present, K40 produces 59 percent of 
the heat generated in chondrites while 
for material with the terrestrial K/U 
ratio, K40 produces only 15.8 percent 
of the heat. A material having a ura- 
nium concentration of 2.255 X 10-8 
g/g and a terrestrial K/U ratio of 10' 
would have the same present produc- 
tion rate as chondrites, but over the 
past 4.5 aeons would produce only 63 
percent as much heat as chondrites. 
This lower heat production is due to 
the relatively short half-life of K40 (1.3 
aeons) as compared with the longer 
half-lives of U2 (4.5 aeons) and Th232 
(13.7 aeons). The fundamental differ- 
ence between models in which potas- 
sium is the principal heat source and 
ones in which uranium plus thorium 
dominate is that in the former case the 
potassium releases almost all its energy 
in the first 2 aeons (20). This early re- 
lease of heat provides a longer time 
scale for escape, whereas in uranium- 
and thorium-dominated models, the heat 
production is distributed more uni- 
formly over earth history. The ratio of 
the rates of heat production 4.5 aeons 
ago to the present rate for chondrites is 
8.2, while for the terrestrial model the 
ratio is 4.5. In the past 3 aeons the 
production rates for the terrestrial ra- 
tio model have changed only by a fac- 
tor of 2.2. Because of the more uni- 
form heat production, the terrestrial 
ratio model may require early differ- 
entiation so that the heat sources are 
near the earth's surface (outer few 
hundred kilometers) during most of 
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Negative Temperature Coefficient of Resistance in Bismuth I 

Abstract. Measurements of the electrical resistance have been made on bismuth 
1 between 15 and 35 kilobars at temperatures between 77.4? and 120?K. Above 
about 150?K, the temperature coefficient of resistance is positive, as in a metal; 
below 150?K, the coefficient becomes negative, as is characteristic of semicon- 
ductors. On the basis that bismuth is a semiconductor, the energy gap, calculated 
by the exponential resistance formula, is 0.006 ev at 15 kb with a steady rise to 
0.018 ev at 35 kb. At higher pressures, bismuth I is transformed into a metallic 
modification with the normal temperature dependence of the resistance. The 
energy gap in bismuth I is not visible at room temperature because thermal exci- 
tation populates the conduction band and metallic behavior is the result. From 
available evidence the observed behavior is due to an energy gap rather than to a 
decrease in carrier mobility. 
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Bismuth I, the form found under 
normal conditions, has long been con- 
sidered a semi-metal. The resistivity, 
123.2 x 10-6 ohm-cm (1), is very high 
for a metal. From a study of bismuth- 
tin alloys, Jones (2) suggested that all 
five of bismuth's valence electrons lie 
in a single energy zone (valence band). 

Bismuth I, the form found under 
normal conditions, has long been con- 
sidered a semi-metal. The resistivity, 
123.2 x 10-6 ohm-cm (1), is very high 
for a metal. From a study of bismuth- 
tin alloys, Jones (2) suggested that all 
five of bismuth's valence electrons lie 
in a single energy zone (valence band). 

A slight overlap into a higher zone 
(conduction band) gives the metallic 
conduction found in pure bismuth. 
Since Jones introduced this hypothesis, 
many experiments-the deHaas-van 
Alphen effect, cyclotron resonance, 
galvanometric effects, and the anoma- 
lous skin effect (3)-have verified the 
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-I---- were at 88 percent antimony and the 
highest carrier concentration was in 

.....- pure antimony. Since the minimum 
mobility occurs in an alloy with metallic 
properties, the carrier concentration 
determines the electrical properties. The 
minimum carrier concentration at 15 
percent is equivalent to creating an 
energy gap, and the alloy is semi- 
conducting. Both Jain and Tanuma 

260 300 measured the lattice parameters and 
found that they decreased with in- 

curve for creasing antimony. Thus addition of 
antimony to bismuth crudely approxi- 
mates the compression of the lattice by 
pressure. Semiconducting behavior 

electrons, might therefore occur in both cases. 
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on cooling sistivity increases 50 percent with 

pressure to 25.5 kb, where the crystal- 
s that bis- lographic transition to the metallic 
iconductor bismuth II occurs (8). Experiments on 

Jain (6) bismuth to 1.7 kb at 77.4?K (9) and to 
coefficient 5 kb at 4.2?K (10) show the same in- 
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found such semiconducting behavior. 
By cooling and compressing bismuth, 

, ....., ..we have found that the temperature co- 
efficient of resistance changes from posi- 
tive to negative owing to the probable 
presence of an energy gap. 

The bismuth (13) was supposedly 
99.999 percent pure. Spectral analysis 
(14) showed five parts per million each 
of copper, magnesium, and silicon. The 
magnesium may have come from the 
spectrometer arc. 

The bismuth was extruded into wire 
0.007 cm in diameter. The Bridgman 
anvils and the method (15) of mounting 
the samples and the pressure measure- 

J ment and calibration, as well as the 

50 55 6o resistance and temperature measure- 
ment, have been described (16). 
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and 35 kb over the temperature range 
77.4? to 120?K. In one series of ex- 

periments the exposed anvils were 
cooled to the temperature of liquid 
nitrogen at three different pressures. 
As the liquid nitrogen evaporated, there 
was a temperature difference of as much 
as 20?K between the top and bottom 
anvils. Measurements during cooling 
cannot be taken since the liquid nitro- 
gen lowers the temperature of the sam- 
ple too abruptly. 

To better equilibrate the system, 
heavy copper blocks were fitted snugly 
around the anvils and the blocks back- 
ing up each anvil. All cracks were 
plugged with Duxseal. With this method 
the liquid nitrogen cannot reach the 
anvils as it cools the massive blocks. 
Both heating and cooling experiments 
can be made with this system, and the 
temperature difference between the top 
and bottom anvils is thus decreased to 
2? to 6?K. Two series of runs at various 
pressures were made by this method. 
With either method, the temperature of 
the bismuth is assumed to be the mean 
between the top and bottom anvil tem- 
peratures. 

Figure 1 shows the resistivity of bis- 
muth as a function of temperature at 
a pressure of 15 kb. From room tem- 
perature to 1550K, the resistivity drops 
with decreasing temperature, as is ex- 
pected of a metal. But from 155?K 
down to 77.4?K, the resistivity rises 
with decreasing temperature, as is char- 
acteristic of a semiconductor. The 
measured resistance of bismuth has 
been converted to resistivity by using 
the value at room temperature and 
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1 atm, 123.2 x 10-6 ohm-cm (1), and 
Bridgman's pressure-resistance data for 
bismuth (8). The inversion of the tem- 
perature coefficient is found at all pres- 
sures between 15 and 35 kb in bis- 
muth I. 

Figure 2 shows resistivity-pressure re- 
sults obtained at 77.4?K between 15 
and 60 kb. From 15 kb, the resistivity 
rises by a factor of 6 with increasing 
pressure. At the I-III transition at 42 
kb the resistivity is 740 x 10-6 ohm-cm, 
much too high for a true metal. The 
drop in resistivity at higher pressures 
shows the presence of the metallic bis- 
muth III phase. 

In semiconductors, the resistance R 
follows the formula, 

R == A exp (E5/2kT) 
where Eg is the energy gap and A is the 
first term of a series. 

The energy gaps resulting from the 
application of the simple formula are 
shown in Fig. 3, where they are plotted 
as a function of pressure. The series of 
points taken with bare anvils are from 
heating experiments only. For the two 
sets of experiments with the copper 
block method, heating and cooling 
values were averaged at each pressure. 
The gap values obtained by cooling are 
about 0.003 ev higher than those ob- 
tained by heating. 

The energy gap in Fig. 3 is 0.006 ev 
at 15 kb and it rises to 0.018 ev at 35 
kb. A linear extrapolation of the energy 
gap to 1 atm yields a value of -0.004 
ev. This negative value, if it were cor- 
rect, would represent the overlap energy 
of the valence and conduction bands. 
Other estimates of the overlap energy 
at 1 atm are much larger, ranging from 
-0.012 to -0.035 ev (17) at low tem- 
peratures. The semiconductor formula 
from which the energy gaps are derived 
is accurate only if the gap is greater 
than kT. Since kT is 0.007 ev at 77.4?K 
and several gap values are smaller, the 
formula does not apply accurately, and 
the gap values must be considered ap- 
proximate. The smallness of the energy 
gap explains why work around room 
temperature fails to show the semicon- 
ducting properties of bismuth. At room 
temperature, the gap is less than kT and 
bismuth appears to be a metal. To ob- 
serve this energy gap, the temperature 
must be reduced to the point where the 
gap is of the order of more than kT. 

1 atm, 123.2 x 10-6 ohm-cm (1), and 
Bridgman's pressure-resistance data for 
bismuth (8). The inversion of the tem- 
perature coefficient is found at all pres- 
sures between 15 and 35 kb in bis- 
muth I. 

Figure 2 shows resistivity-pressure re- 
sults obtained at 77.4?K between 15 
and 60 kb. From 15 kb, the resistivity 
rises by a factor of 6 with increasing 
pressure. At the I-III transition at 42 
kb the resistivity is 740 x 10-6 ohm-cm, 
much too high for a true metal. The 
drop in resistivity at higher pressures 
shows the presence of the metallic bis- 
muth III phase. 

In semiconductors, the resistance R 
follows the formula, 

R == A exp (E5/2kT) 
where Eg is the energy gap and A is the 
first term of a series. 

The energy gaps resulting from the 
application of the simple formula are 
shown in Fig. 3, where they are plotted 
as a function of pressure. The series of 
points taken with bare anvils are from 
heating experiments only. For the two 
sets of experiments with the copper 
block method, heating and cooling 
values were averaged at each pressure. 
The gap values obtained by cooling are 
about 0.003 ev higher than those ob- 
tained by heating. 

The energy gap in Fig. 3 is 0.006 ev 
at 15 kb and it rises to 0.018 ev at 35 
kb. A linear extrapolation of the energy 
gap to 1 atm yields a value of -0.004 
ev. This negative value, if it were cor- 
rect, would represent the overlap energy 
of the valence and conduction bands. 
Other estimates of the overlap energy 
at 1 atm are much larger, ranging from 
-0.012 to -0.035 ev (17) at low tem- 
peratures. The semiconductor formula 
from which the energy gaps are derived 
is accurate only if the gap is greater 
than kT. Since kT is 0.007 ev at 77.4?K 
and several gap values are smaller, the 
formula does not apply accurately, and 
the gap values must be considered ap- 
proximate. The smallness of the energy 
gap explains why work around room 
temperature fails to show the semicon- 
ducting properties of bismuth. At room 
temperature, the gap is less than kT and 
bismuth appears to be a metal. To ob- 
serve this energy gap, the temperature 
must be reduced to the point where the 
gap is of the order of more than kT. 

It is possible that the negative tem- 
perature coefficient of resistance in bis- 
muth is due to a decrease in carrier 
mobility as temperature decreases at a 
given pressure. However, no such 
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mechanism is known in metals. More- 
over, no mechanism affecting mobility 
in metals has been found to yield a 
resistivity as large as 740 x 10'6 ohm- 
cm. The negative temperature coeffi- 
cient is more likely due to the creation 
of an energy gap as the pressure in- 
creases. The decrease in carrier con- 
centration with increasing pressure 
found in work at room temperature on 
Hall coefficients (11) supports this 
view. The decrease in overlap energy 
to 1 kb (12) offers further support. 

It is interesting to note the wide 
range of behavior shown by the element 
bismuth upon compression to 30 kb. 
In phase I, it is poorly metallic to semi- 
conducting, but not superconducting 
(18). Phases II and III, formed under 
pressure, are both purely metallic, with 
III and possibly II both being super- 
conducting (19). 
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Phase Separation in Suspensions 
Flowing through Bifurcations: 
A Simplified Hemodynamic Model 

Abstract. In the laminar flow of a 
suspension of neutrally buoyant spheres 
through a bifurcation, intended as a 
simplified macroscopic model of the 
flow of blood, the concentration in the 
side branch is generally lower than in 
the main branch, and is affected pri- 
marily by the ratio of discharges in the 
two branches, the concentration up- 
stream, and by the branch size. 

The occurrence of lower concentra- 
tions of red cells in the side branches 
of bifurcations in the smaller vessels of 
the circulatory system is a well-known 
phenomenon (1), which has also been 
reproduced in vitro (2, 3). The phe- 
nomenon is of significance both in 
physiology and in fluid mechanics, but 
there have been few systematic studies 
of the subject. 

To assess the influence of some of 
the factors affecting the phenomenon, 
we have conducted experiments with 
suspensions of rigid, neutrally buoyant, 
plastic spheres in a mixture of 87 per- 
cent water and 13 percent glycerine 
(by volume), in steady laminar flow 
through bifurcations formed by a side 
branch leaving a straight main tube, as 
shown in Fig. 1A. In three bifurca- 
tions the diameter (D2) of the side 
branch was the same as that of the 
main branch (D =- 6.32 mm) both 
upstream and downstream of the bifur- 
cation, and the side branches formed 
angles of 45?, 60?, and 90?, respec- 
tively, with the downstream portion of 
the main branch; in the fourth bifurca- 
tion the side branch was at an angle of 
45?, but had a narrower diameter (D2 
= 1/2D1 = 3.16 mm). The two values 
of the ratio D2/D1 (1.0 and 0.5) cover 
the common range for branchings in the 
circulatory system. 

The bifurcations were drilled through 
Lucite blocks and presented a sharp edge 
at the junction of the branches. The 
main branch was always vertical, and 
was attached to the downstream end 
of a vertical Lucite tube of the same 
diameter (6.32 mm) and 190 cm in 
length. The flow was supplied to the 
apparatus from a tank in which the 
liquid surface was maintained at a con- 
stant level; the water and glycerine 
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stant level; the water and glycerine 
mixture was returned to the tank by a 
pump. The flow rates in the two 
branches of the bifurcation were varied 
by means of resistances; the liquid and 
solid flow rates were measured volu- 
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