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other compound eyes, the rhabdome is have been described by Naka (1). He 

thought to contain the photosensitive found that ommatidial cells are elec- 

pigment and, therefore, to be respon- trically polarized (with the negative 
sible for the initiation of responses to pole inside) and that steps of light 
light. evoke depolarization in two phases- 

When the eye is sectioned along an a high, transient and a lower, steady- 
appropriate plane, a layer of ommatidia state phase. 
is exposed, and individual ommatidia Work on the visual cells of dragon- 
(but not individual cells) can be clearly flies (suborder Anisoptera) was ex- 
seen under a dissecting microscope. It tended, in the experiments reported 
is then possible to introduce a micro- here, to include studies on the rela- 
electrode into an ommatidium, under tionship between the intensity of the 
visual control. stimulating light and the size of the 

Some features of the responses re- response, and also the effects of elec- 
corded from visual cells of dragonflies tric currents on the responses to light. 
by means of intracellular electrodes In confirmation of Naka's (1) re- 
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1 sec 1 sec 
Fig. 1. Responses to illumination with steps of light of 1-second duration. (Left) 
Figures at left are the logarithm of relative light intensity. One beam measures dura- 
tion (but not intensity) of the step of light and the other beam measures the intra- 
cellular potential change evoked by light. Temperature, 20?C. (Right) Recordings from 
a different preparation. Figures at right indicate the intensity, in nanoamperes (1 na 

10-9 amp), of a steady current passed through the intracellular microelectrode and 
thus through the cell membrane. The steps of light are all of the same intensity. It 
may be seen that the change in potential is increased by hyperpolarizing (-) currents 
and decreased by depolarizing (+) currents. Temperature, 20?C. 

69 

( ------------__ -I L i 

1 sec 1 sec 
Fig. 1. Responses to illumination with steps of light of 1-second duration. (Left) 
Figures at left are the logarithm of relative light intensity. One beam measures dura- 
tion (but not intensity) of the step of light and the other beam measures the intra- 
cellular potential change evoked by light. Temperature, 20?C. (Right) Recordings from 
a different preparation. Figures at right indicate the intensity, in nanoamperes (1 na 

10-9 amp), of a steady current passed through the intracellular microelectrode and 
thus through the cell membrane. The steps of light are all of the same intensity. It 
may be seen that the change in potential is increased by hyperpolarizing (-) currents 
and decreased by depolarizing (+) currents. Temperature, 20?C. 

69 



216 the transition between the early, 92161 | 
transient and the later, steady-state 

40 - phases. Both at the beginning of the 

nV response and 1 second after the onset 
o 6 of the illumination, the amplitude of 

30 the voltage change is an approximately 
D/ 0/ linear function of the logarithm of light 

/@~o J intensity, as shown in Fig. 2. 
20 - Qualitatively, the features of the re- 

sponses described are similar to those 
that occur in visual cells of Limulus 

10 - (2, 3). The most striking difference is 
that, whereas nerve impulses are usu- 

ally recorded from cells of Limulus, no 
signs of impulse activity could be re- 

Iog i -2.4 -1.8 -1.2 - .6 0 corded in the dragonfly. In addition, 
?ig. 2. Relation between the height of the threshold for the first detectable 
esponse and the light intensity. Data response is higher in dragonflies than in 
Lre from the experiment of Fig. 1, left. Limulus and the oscillation which oc- 
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ieight of response 900 msec after initia- curs with bright light is less damped 
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ight intensity. the microelectrode, a drop in potential 

occurs across the membrane of the 
cell. It was found in Limulus that 

ults, it was found that when an hyperpolarizing currents increase the 
)mmatidium is penetrated by a micro- size of the potential change evoked by 
lectrode, a steady resting potential light (2), and this finding was ex- 
usually 30 to 60 my, with the negative plained by the assumption that the 
Dole inside) is recorded, and that this voltage drop produced by the current 
>otential difference is reduced by il- across the cell membrane is less during 
umination. Figure 1, left, illustrates illumination than it is when the mem- 
esponses obtained after illumination brane is at rest. Thus, it was con- 
vith steps of light of different intensity. cluded, membrane resistance is de- 
t may be seen that, with weak light, creased during illumination, and it was 
he response is approximately "square- suggested that the change of voltage 
haped," but that, with increasing light recorded after illumination is a conse- 
ntensities, a higher transient response quence of this decrease in membrane 
levelops at the onset of illumination resistance. Similar results were ob- 
Lnd an oscillation becomes apparent at tained when the same method was 

applied to responses recorded from 

dragonflies. As Fig. 1, right, shows, 
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the voltage change evoked by a given 
intensity of light, while depolarizing 
currents decrease it. The relation be- 

- -< ,40 _ tween the current intensity and the size 
of the voltage change is approximately 

--^^ .30 \"^ linear, both during the early phase of 
the response and in the steady state 

1~--2^20 - (Fig. 3). That membrane conductance 

changes as a result of illumination can 
- to be confirmed by the bridge-balance 

method. If the potential drop evoked 
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ness, unbalance, revealing increased 

-ig. 3. Relation between the magnitude conductance of the arm that includes 
)f the voltage change evoked by light 
Lnd the intensity of a steady current 
hrough the cell membrane. Data are lumination, just as it is observed 
rom the experiment of Fig. 1, right. in Limulus (2). 
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also to the dragonfly. Thus, it seems 
likely that light evokes increase of 
conductance of the membrane of visual 
cells of dragonflies and that the de- 
crease in membrane potential that oc- 
curs as a result of illumination is a 
consequence of the change in conduct- 
ance. The similarities between Limulus 
and the dragonfly in their responses to 
steps of light and in the relation be- 
tween amplitude of response and light 
intensity suggest that essentially the 
same mechanisms operate in the two 
species. 

M. G. F. FUORTES 
National Institute of Neurological 
Diseases and Blindness, 
Bethesda, Maryland 
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Aversive Stimulation of the Rat: 

Long-Term Effects on 

Subsequent Behavior 

Abstract. One year after exposure 
to intense electric shock, rats were 

punished with shocks of lesser intensity. 
The previous exposure increased the 

suppressive effects of the punishment 
during both the initial encounter with 

punishment and over the course of a 

7-day test period. Rats that had not 
been previously exposed to shock re- 
covered during continued shock punish- 
ment. 

When a mature animal is exposed 
for a brief period to experiences of 
intense aversive stimulation, its reac- 
tions to fear-producing stimuli in sub- 

sequent test situations are drastically 
modified (1). The results of a number 
of recent studies have been consistent 
with the hypothesis, originally proposed 
by Kurtz and Pearl (2), that prior ex- 

periences of intense fear serve to sen- 
sitize an organism, predisposing it to 
react with "increased fearfulness" dur- 

ing later encounters with aversive stimu- 
lation. For example, such prior treat- 
ment results in increased resistance to 
extinction of an acquired-fear response 
(2), greater disruptive effects during an 
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