
Information Retrieval Systems 

Statistical decision theory may provide a measure of 

effectiveness better than measures proposed to date. 

John A. Swets 

In the past 5 years, the period of 

intensive study of information-retrieval 

systems, ten different measures for 

evaluating the performance of such sys? 
tems have been suggested. In this arti- 
cle I review these measures and propose 
another. 

The various measures have much in 
common. Eight of them evaluate only 
the effectiveness (accuracy, sensitivity, 
discrimination) of a retrieval system 
and are derived completely, in one way 
or another, from the 2-by-2 contin- 

gency table of pertinence and retrieval 

represented in Fig. 1. The other three 
measures assess efficiency as well as 

effectiveness, by including such per? 
formance factors as time, convenience, 

operating cost, and product form. 
In some of the measures, in each of 

the categories just mentioned, the vari- 
ables considered are combined into a 

single number. In other measures, of 
each kind, the separation of two or 
more variables is maintained, and the 
numerical value of each is listed. Still 
other measures consist of a graph show- 

ing the relationship between two vari? 
ables related to effectiveness. 

The measure proposed here is one 

supplied by statistical-decision theory. 
It compresses the four frequencies of 
the contingency table into a single num? 

ber, and it has the advantage that this 

single number is sufficient to generate a 
curve showing all of the different bal- 
ances among the four frequencies that 
characterize a given level of accuracy. 
That is to say, this measure, given the 

validity of the model underlying it, pro- 
vides an index of effectiveness that is 
invariant over changes in the breadth 
of the search query or in the total num? 
ber of items retrieved. If desired, a 
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second number can be extracted from 
the fourfold table to characterize the 

specific balance among the frequencies 
that results from any specific form of 

query. This measurement technique has 
the drawback, at present, that the mod? 
el on which it is based has not been 
validated in the information-retrieval 

setting. The ground for optimism on 
this score is the fact that the model has 
been validated in analogous problems 
of signal detection studied in electrical 

engineering and psychology. 
Before proceeding to the review and 

proposal, it should be stated that this 
article deals only with measures of 
merit?that is, with the dependent vari- 
ables of an experiment conducted to 
evaluate one or more retrieval systems. 
It is not concerned with methodological 
issues (such as the number of items in 
the information store, the means of 

determining relevance, the number and 

qualifications of judges, and the form 
and number of queries) in the design 
of such experiments. 

Review 

In this review I present the measures 
to some extent in the terms of their 

originators and to some extent in com? 
mon terms which will make it easier to 

compare and contrast them with the 
measure proposed here. A common 

vocabulary is achieved by coordinating 
the variables expressed in the various 
terms of different writers with the quan- 
tities of the contingency table as they 
are represented in Fig. 1. These trans- 
lated quantities always appear in brack- 
ets. Thus, [a] represents the number of 
pertinent items retrieved. A quantity 
such as [a/a+c] represents the propor- 
tion of pertinent items retrieved and 

may be taken as an approximation to 
the conditional probability that a per- 

tinent item will be retrieved?a prob? 
ability denoted [Prp(R)]. It is conven- 
ient at times to refer to these quantities 
in words, so I define them as follows: 

a/a+c =PrP(R) ? conditional probability 
of a "hit." 

b/b+d =Pr?(R) = conditional probability 
of a "false drop." 

c/a+c = PrP(R) = conditional probability 
of a "miss." 

d/b+d =Prp(R) = conditional probability 
of a "correct rejection." 

The first measure to be considered is 
one proposed by Bourne, Peterson, 
Lefkowitz, and Ford (i), a measure 
best described as "omnibus." These 
writers recommend determining a meas? 
ure of agreement between an aspect of 

system performance and a related user 

requirement for each of approximately 
10 to 12 requirements. The measures 
of agreement are then multiplied by 
weighting coefficients which represent 
the relative importance of the require? 
ments, and the products are summed to 
achieve a single figure of merit. 

Bourne and his associates report the 
results of what they regard as a pre- 
liminary investigation, and it is true 
that the measure has not yet been de? 
scribed in sufficient detail for applica? 
tion. The requirements to be included 
in the measure have deliberately not 
been fixed; it is suggested that they will 
represent such factors as amount of 
pertinent material missed [c], amount 
of nonpertinent material provided [b], 
delay, ease of communication, com- 

plexity of search logic accommodated, 
form in which items are delivered, and 
degree of assurance that items on a 
given subject do not exist. Bourne and 
his associates point out that there are 
not enough quantitative data available 
to apply the measure now, but they do 
present data which demonstrate that 
users tend to disagree on the relative 
importance of different user require? 
ments. They do not justify the com- 
bining of many different kinds of vari- 
ables on a single metric. 

Bornstein (2), in discussing details 
of experimental design, proposes con- 
sideration of the following four vari- 
ables: (i) the number of pertinent [a], 
partially pertinent, peripherally perti? 
nent, and nonpertinent [b] responses to 
each question; (ii) the time spent by 
the user in examining materials in each 
of the four categories of pertinence; 
(iii) the proportion of acceptable sub- 
stitutes for "hard copy" which are sup- 
plied in each of the four categories; and 
(iv) the actual coincidence and unique- 
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ness of responses on the four-point 
scale of pertinence. 

Bornstein suggests that analyses of 

variance be carried out for variables 

i, ii, and iii for each point on the 

pertinence scale, the main effects at- 
tributed to the different retrieval sys? 
tems being compared. He suggests that 
within-cell variance terms and certain 
interaction effects will also convey valu- 
able information. This procedure yields 
only relative measures of effectiveness 
and efficiency, but Bornstein argues 
that using a known store of informa? 

tion, which is necessary if absolute 
measures are to be obtained, requires 
excessive effort and biases the compari- 
son of different retrieval systems. 

Wyllys (5) derives a single figure of 
merit for the efficiency of a search tool 
as employed at a given stage in a 

sequential search process. He proposes 
to obtain the product of four variables: 

(i) the "restriction ratio" (which is 

the number of items retrieved at stage 
k divided by the number of items re? 

trieved at stage k ? 1, or the reduction 
in the number of potentially pertinent 
items that is effected by the search 

tool); (ii) the cost of using the tool; 

(iii) the number of pertinent docu- 
ments eliminated from further consid- 
eration [c]; and (iv) a loss function 

Wyllys states that the cost variable 
should be defined in accordance with 

the local situation to weight correctly 
such factors as time, money, incon- 

venience, and indexing costs, and that 

the loss function should incorporate 
the degree of pertinence of the perti? 
nent documents eliminated. 

Verhoeff, Goffman, and Belzer (4) 

propose a measure which may be trans- 
lated as 

M - [a{Vi) - b(Kt) - c(K2) + d(V,)l 

in which [Ki] and [Kz] are non-negative 
constants, and for which pertinence is 
defined by each system user. 

These writers would maximize the 
measure for a given retrieval system, 
over users with different opinions about 

pertinence, by defining a critical proba? 

bility 

for each item relative to each query, 
and by retrieving those items having a 

probability of pertinence greater than 
the critical probability. This procedure 
is germane to system design and use 
rather than to system evaluation, but 
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Fig. 1. The 2-by-2 contingency_table of 
pertinence and retrieval. P and P denote, 
respectively, pertinent and nonpertinent 
items; R and R denote, respectively, re? 
trieved and unretrieved items; a, b, c, and 
d represent the simple or weighted fre- 
quencies of occurrence of the four con- 
junctions; Vi is the value of retrieving a 
pertinent item; V2 is the value of not re? 
trieving a nonpertinent item; Ki is the 
cost of retrieving a nonpertinent item; 
and K2 is the cost of failing to retrieve a 
pertinent item. 

I mention it because it bears some re- 

semblance to concepts discussed later 

in this article. 
Swanson (5) has proposed a meas? 

ure M = R ? pl, where R is the sum 
of relevance weights of retrieved items 
divided by the sum of relevance weights 
(for a given query) of all items in the 

store; I is the effective amount of irrele- 
vant material, and is defined asiV- LR 

where JV is the total number of items 
retrieved [a + b] and L is the total 
number of pertinent items in the store 

[a + c]; and p is a penalty [Ki] which 

takes on arbitrary values. 
Borko (6) presented a modification 

of Swanson's measure in which the 

irrelevancy score / is redefined. In 

Borko's measure, / is the number of 

nonpertinent items retrieved [b] divided 

by the number of items retrieved 

[a + b], or [Prn(P)]. Borko also pre- 
fers to do without the arbitrary penalty 
on nonpertinent retrievals so that the 
measure is bounded by +1 and ?1. 

Mooers (7) proposes three ratios: 

(i) the ratio of the number of crucially 
pertinent items retrieved to the number 
of crucially pertinent items in the store; 

(ii) the ratio of the number of perti? 
nent or crucially pertinent items re? 
trieved to the number of pertinent or 

crucially pertinent items in the store; 
and (iii) the ratio of the number of 

nonpertinent items retrieved to the num? 
ber of nonpertinent items in the store. 

In more general terms, Mooers pro? 
poses consideration of three condi- 

tional probabilities?of an important 
hit, of a hit, and of a false drop. He 
states that, for an excellent system, 
the first probability should be high and 
the last should be simultaneously low. 
He further states that a system is good 
if the first is near 1.0, and very good 
if the last is less than .01. The second 
variable is said to be of less importance 
than the other two; it should always 
closely approach 1.0. 

Perry and Kent (8) consider several 

quantities found in the contingency 
table but focus on two: (i) the con? 
ditional hit probability, [ala -f- c] or 

[Prp(R)], and (ii) the inverse hit prob? 
ability [a/a + b] or [PrR(P)l 

Cleverdon (9) considers the same 
two variables, which in his terms are 
the "recall ratio" and the "relevance 

ratio," respectively. He emphasizes the 

trading relationship (that is: as the 
inverse hit probability or relevance ra? 
tio increases, the hit probability or re- 
call ratio can be expected to decrease) 
and suggests that it will be illuminating 
to plot the recall ratio against the rele? 
vance ratio. He expects that a curve 
will be generated, with an as yet un- 

known shape, as the restrictiveness of 

the search query is varied. He has 

speculated that the curve will look 

something like the one in Fig. 2. Thus, 

highly restrictive queries would lead to 

a relatively high relevance ratio and to 

a relatively low recall ratio; a less restric? 
tive query would enhance the recall 
ratio at the expense of the relevance 
ratio. 

Swanson's second proposal (10) is 

much like the last few discussed. From 

an experiment on automatic text search- 

ing he has plotted the percentage of 

pertinent items retrieved [or the con? 

ditional hit probability, PrP(R)] against 
the number of nonpertinent items re? 

trieved [b]. His data follow the curve 

of Fig. 3. The data points forming 
this curve were generated by a proce- 
dure analogous to varying the require? 
ments for proximity, in text, of key 
words, and by specifying either an 
"and" or an "or" relationship among 
a variable number of key words. 

The proposal made in the next sec- 

tion, discussed later in detail, is that 

Prp(R) be plotted against b/b + d? 

that is, against Prp(R)?rather than 

against b, as Swanson has done, or 

against PmiP), as Cleverdon has done. 

One reason is that the quantities Prp(R) 
and Prp(R) contain all the informa- 

tion in the fourfold table of pertinence 
and retrieval, because the other two, 
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Prp(R) and Prp(R), are simply their 

complements. The major point, how- 

ever, is that, for these axes, statistical- 
decision theory provides a family of 

theoretical curves, which are similar in 

appearance to Swanson's empirical 
curve, along with two parameters. One 
of the parameters, the one of major 
interest, reflects accuracy; it is an index 
of the distance of a curve from the 

positive diagonal, the latter correspond- 
ing to chance performance. The other 

parameter reflects the breadth of the 

query; it indexes a point on a curve 

by the slope of the curve at that point. 
Thus, if it can be generally estab- 

lished that varying the breadth of the 

query in retrieval systems will generate 
a curve of the type provided by the 

theory (and this seems likely), then it 

is possible to combine the hit and false- 

drop probabilities, Prp(R) and Pr?(R), 
into a single number which is an ab- 
solute measure of retrieval-system ac? 

curacy, independent of the particular 
balance between the two probabilities 
that is struck by any particular form 
of query, and also to combine the two 

probabilities in another way into an? 
other single number to represent any 
particular balance between them. 

Proposal 

The relevance of statistical-decision 

theory to the problem of information 
retrieval has been observed before. 
Maron and Kuhns (11) have suggested 
"an interpretation of the whole library 
problem as one where the request is 
considered as a clue on the basis of 
which the library system makes a con- 
catenated statistical inference in order 
to provide an ordered list of those 
documents which most probably satisfy 
the information needs of the user." 
Wordsworth and Booth (12) have ap? 
plied game theory to the problem of 

deciding when to stop a search. Here 
I simply call attention to the possibility 
that statistical-decision theory will pro? 
vide a measure of retrieval effective- 
ness that is preferable to the measures 

proposed to date. 
Decision theory is addressed to the 

problem of assigning a sample, bearing 
evidence, to one or the other of two 

probability distributions?one of two 

(mutually exclusive and exhaustive) 
statistical hypotheses is to be accepted. 
An analogous problem is posed in clas- 
sical problems of signal detection. The 
measure taken of the input to a detec- 
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tor, in a particular time interval, must 
be assigned to one of two events?the 
detection system reports either that 
noise (random interference) alone ex- 
isted or that a specified signal existed 
in addition to the noise. Similarly, a 
retrieval system takes a measure of a 

given item in the store, relative to a 

particular query, in order to assign the 
item to one of two categories?the re? 
trieval system rejects the item as not 

being pertinent or retrieves it. 
Decision theory describes the optimal 

process for making the type of decision 
with which it deals (13). This process 
description has been translated directly 
into a functional specification of the 
ideal signal-detection device (14) and 
it has been found to represent quite 
accurately the behavior of human ob- 
servers in a variety of detection and 

recognition tasks (15, 16). 
The primary concern here is not with 

a process, or with system design, but 
rather with the measurement techniques 
that accompany the process description. 
The process model is presented here, 
though very briefly, because it provides 
a rationale for the measurement tech? 

niques. The model is described in the 

language of the retrieval problem to 

display one possible coordination be? 
tween the elements of the model and 
the physical realities of retrieval. It is 

suggested, however, that the measure? 
ment techniques may be used to ad- 

vantage whether or not this particular 
coordination seems entirely apt. 

The model. Let us assume that when 
a search query is submitted to a re? 
trieval system the system assigns an 
index value (call it z) to each item in 
the store (an item can be a document, 
a sentence, or a fact) to reflect the 

degree of pertinence of the item to the 

query. (Maron and Kuhns have de? 
scribed a particular procedure to ac- 

complish this assignment, but let us 

regard such a procedure, in general, as 
a feature of all retrieval systems.) 
Now it may be that for a given need, 
or for the need as translated into a 
search query, the items in a given store 
do in fact vary considerably in perti? 
nence, from a very low value (or no 

pertinence) to a very high value (or 
full satisfaction of the need). On the 
other hand, all of the items may in 
fact (according to expert opinion or 
the user's opinion) be either clearly 
nonpertinent or clearly pertinent to 
the need. In either case the retrieval 

system, being imperfect, will view the 
items as varying over a range of perti- 

RELEVANCE RATI 0 [ PrR (P) j 

Fig. 2. The plot suggested by Cleverdon (9) 
to show the trading relationship between 
the proportion of pertinent items which 
are retrieved and the proportion of re? 
trieved items which are pertinent. 

nence; indeed, because of the error 
which will exist in any retrieval sys? 
tem, the value of z assigned to a non? 

pertinent item will frequently be higher 
than the value of z assigned to a perti? 
nent item. 

Thus, we assume that the retrieval 

system assigns a fallible index of perti? 
nence, z, and that there exists, apart 
from the retrieval system, a knowledge 
of which items are "in truth" pertinent 
and nonpertinent. We may speculate 
that the situation is similar to that de- 

picted in Fig. 4. The abscissa repre? 
sents the degree of pertinence as in- 
dexed by z. The ordinate shows the 

probability of assignment of each value 
of z. The lefthand function, /p(z), 
represents the distribution of values of 
z assigned to nonpertinent items, and 
the righthand function, fp(z), repre? 
sents the distribution of values of z 
assigned to pertinent items. It should 
be noted that an umpire can determine 

0 5 10 15 20 
NUMBER NONPERTINENT ITEMS RETRIEVED [b\ 

Fig. 3. Curve representing an idealization 
of data reported by Swanson (10). 
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Fig. 4. A representation of the probability 
distributions, on the index of pertinence z, 
related to nonpertinent and pertinent items, 
and of the retrieval criterion zc. 

the condition P or P (that is, he can 

classify all items as being pertinent or 

nonpertinent) either because, in his 

opinion, they all fall clearly into one 
of these two categories or by virtue of 

selecting arbitrarily a cutoff along a 
continuum of pertinence. 

Figure 4, as described so far, is in- 
tended only to portray the assumptions 
that the values of z assigned to P items 

vary about a mean, that the values of 
z assigned to P items vary about a 

higher mean, and that the two distribu? 
tions overlap. The two distributions are 
shown as normal and of equal variance. 
These assumptions, if justified empiri- 
cally, facilitate the calculation of a 
measure of effectiveness, but they are 
not necessary. 

It is clear from the representation 
of the problem in Fig. 4 that if the 
retrieval system is to accept (retrieve) 
or reject each item on the basis of the 
index value z associated with it, a cri? 
terion of acceptance must be established 

by, or for, the system. A cutoff value 
of z, denoted zc, must be established 
such that all items with z > Zo are re- 
trieved and all items with z < Zo are 

PrB(R) 

Fig. 5. A typical operating-characteristic 
curve. 
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rejected. It may also be seen in Fig. 4 
that a trading relationship exists be? 
tween the conditional probability of a 

hit, Prp(R) [represented by the area 
under fp(z), to the right of Zc], and the 
conditional probability of a false drop, 
PrP(R) [the area under fp(z) to the 

right of Ze]. If, for example, the ac- 

ceptance criterion is made more leni- 
ent?that is, if Ze is moved to the left 

?Prp(R) is increased at the expense 
of increasing Prp(R). 

Just where, along the z axis, the cut- 
off is best set is determined by the val? 
ues and costs appropriate to a particular 
retrieval need. If the user is willing to 
examine a good deal of nonpertinent 
material in order to reduce the chance 
of missing a pertinent item, the cutoff 
should be low. Alternatively, if time 
or money is an important factor and a 
miss is not very serious, the cutoff 
should be high. Similarly, certain a 

priori probabilities may affect the level 
of the desired cutoff. If the user has 

good reason to believe the store con- 
tains the item he wants, he may choose 
to make a relatively thorough search; 
if he is doubtful that the store contains 
the item he requires, he may prefer a 
token search, of only the items most 

likely to be responsive to his query, 
In practice, the level of the cutoff may 
be set, though imprecisely to be sure, 

by the choice of a form of query. The 
choice of an "and" or "or" relationship 
among a number of key terms, and the 

selection of the number of key terms, 
are ways of determining the breadth of 

the query and thus the level of the 

z-axis cutoff. 
In the next section I derive a mea? 

sure of the basic effectiveness of a 

retrieval system that is independent of 
the level of the acceptance criterion. 
If the general representation of the 

problem in Fig. 4 is valid, then the 
measure presented is the only one that 
serves the purpose. Measures of the 

proportion of hits, or the proportion 
of hits and correct rejections, or the 

proportion of hits minus the proportion 
of false drops, or other measures of this 

kind, are not adequate, and simply 
observing various values of two vari? 

ables, such as the proportion of hits 

and the proportion of false drops, is an 

unnecessarily weak procedure. 
Of course, the assumption that a real 

retrieval system has a constant effec? 

tiveness, independent of the various 
forms of queries it will handle, is open 
to question. It seems plausible, how- 

ever, that the sharpness of the retrieval 

Fig. 6. A family of operating-character- 
istic curves, based on normal distributions 
of equal variance, with values of the 
parameter E. 

system's query language, and its depth 
of indexing, and also the heterogeneity 
of items in the store, will determine a 
level of effectiveness that is relatively 
invariant over changes in the form of 
the query. In any event, the assump- 
tion is subject to empirical test, and 
its importance is sufficient to justify the 
effort of testing. Again, it may be that 
retrieval systems vary considerably in 
their ability to handle different forms 
of query?that is, to adopt different 

acceptance criteria?some present sys? 
tems being relatively inflexible. Differ- 
ences in this respect come under the 

heading of efficiency, as opposed to 

effectiveness, and can be taken into 
account separately. This kind of flexi- 

bility will probably be a standard fea- 
ture of future retrieval systems. 

Derivation of the measure. The pro? 
posal made here amounts to a recom- 
mendation that retrieval-system perform- 
ance be analyzed by means of the 

Fig. 7. A family of operating-character- 
istic curves based on an assumption of 
increasing variance. 
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operating characteristic as used in sta- 

tistics. One form of the operating char? 

acteristic is the curve traced on a plot 
of Prp(R) versus Prp(R) as the z-axis 
cutoff varies. One such operating-char- 
acteristic curve, calculated on the basis 
of the assumptions that the underlying 
probability distributions (of Fig. 4) are 
normal and of equal variance, is shown 
in Fig. 5. The complementary prob- 
abilities, of a correct rejection and of 
a miss, Pr?(R) and Prp(R), are also 
included in Fig. 5 to emphasize the 
fact that a complete description of the 
retrieval system's performance can be 
obtained from an operating-character- 
istic curve. 

It is evident that a family of theo- 
retical operating-characteristic curves 
can be drawn on the coordinates of 

Fig. 5, bounded by the positive dia- 

gonal and the upper left-hand corner, 
that correspond to different distances 
between the means of the two proba? 
bility distributions, fp(z) and fp(z). 
Since the distance between the means 
of these two distributions reflects the 

ability of the retrieval system to segre- 
gate nonpertinent and pertinent items, 
the parameter of this family of curves 
will serve as a measure of effectiveness. 

If the curves are normal, they can 
be characterized by a single parameter 
?namely, the distance between the 
means of the two probability distribu? 
tions divided by the standard deviation 
of the distribution of nonpertinent 
items, 

Mfp(z) - MMz) 

It does no harm to adopt the conven- 
tion that this standard deviation is 

unity, and then the parameter is just 
the difference between the means. This 

measure, which in this context I shall 
call E, is simply the normal deviate. 
It is easily obtained from a table of 
areas under the normal curve. Figure 6 
shows a family of operating-character? 
istic curves and the associated values 
of E. 

It is possible to relax the assumption 
of equal variance of the two distribu? 
tions which was made in drawing the 
curves of Fig. 6. By way of illustration, 
Fig. 7 shows a family of theoretical 
curves calculated on the basis of the 
assumption that the variance of fp(z) 
increases with its mean?in particular, 
that the ratio of the increment in the 
mean to the increment in standard 
deviation is equal to 4.0. 

I next describe a convenient way of 
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Fig. 8. Normal operating-characteristic curves plotted on double-probability graph paper. 

calculating E in practice, and show how 
an additional parameter may be ob- 
tained, if necessary, to represent the 
ratio of variances. For the present, it 
is important to note that the assump- 
tion of normality will probably be ade- 

quate, and that curves based on quite 
extreme variance ratios differ very lit- 
tle. It will, in fact, be difficult to ob- 
tain enough data to reject the nor? 

mality assumption or to distinguish 
among similar assumptions about vari? 
ance. With the variance ratio as a 
free parameter, a normal operating- 
characteristic curve can be drawn to 
fit closely any steadily rising function. 
That a steadily rising curve will be 
obtained in practice is a reasonable 
expectation; Swanson's data (Fig. 3) 
certainly fit such a curve. 

Having seen how a given level of 

sensitivity or effectiveness can be meas? 
ured by a single number E\ independ? 
ent of a particular acceptance criterion, 
let us observe in passing that the slope 
of the curve at any point will serve as 
an index of the particular acceptance 
criterion, and of the breadth of the 
search query, which yielded that point. 
Strictly speaking, it is assumed in sta? 
tistical theory that the z axis of Fig. 4 
is a scale-of-likelihood ratio, fp(z)/ 

fp(z)9 and then the value of the slope 
of the operating-characteristic curve at 
any point is exactly the value of likeli- 
hood ratio at which the acceptance 
criterion must be set to produce that 
point. Moreover, if the a priori proba? 
bilities [Pr(P) and Pr(P)] and the val? 
ues and costs are known, then the opti- 
mal setting of the acceptance criterion 
is at the value of likelihood ratio equal 
to 

Pr(P) (V2 + Kt) 
Pr(P) 

' 
(Vt + K2) 

However that may be, the formal as- 
sumptions and the full quantitative 
power of statistical theory have not 
been emphasized here; although they 
may ultimately be found to be of value 
in the retrieval application, the use of 
the suggested measures does not depend 
on this finding. The slope may simply 
be taken as the measure of the accept? 
ance criterion, empirically, without con- 
cern for its precise theoretical basis. 
It is clear that the difference in the 
slopes at two points of a steadily rising 
function is a straightforward measure 
of the effective change in the breadth 
of a search query. 

In brief, the operation of a retrieval 
system yields entries in the cells of a 
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fourfold contingency table and thus 

yields estimates of four conditional 

probabilities, two of which are inde- 

pendent. For any given query or form 

of query, these two probabilities can 

be plotted as a point in the unit square 
of Fig. 6. 

The parameter of the theoretical 
curve on which the point falls is a 

measure of retrieval system effective? 

ness; the slope of the curve at that 

point is a measure of query breadth. 

It is expected that the various fourfold 

tables which result from systematically 

varying the breadth of the queries ad- 

dressed to a given retrieval sytem will 

generate a steadily rising function simi- 

lar to the ones shown in Fig. 6. 

Specifics of measurement techniques. 
The most convenient way of convert- 

ing the conditional probabilities of a 

hit and of a false drop into a value of 

E is to plot them on normal coordi- 

nates?that is, on probability scales 

transformed so that the normal deviates 

are linearly spaced (for example, Codex 

Graph Sheet No. 41,453). On these 

scales, as illustrated in Fig. 8, the nor? 

mal operating-characteristic curve be- 

comes a straight line. The points indi- 

cated as A and B illustrate that the 

difference between the normal-deviate 

values, one taken from the abscissa and 

one from the ordinate, is equal to E. 

The lines shown in Fig. 8, having 
unit slope, are based on probability dis? 

tributions, f?(z) and fp(z), of equal 
variance. In general, the reciprocal of 

the slope (with respect to the normal- 

deviate scales) is equal to the ratio of 

the standard deviation of fp(z) to the 

standard deviation of fp(z). Thus, the 

curves of Fig. 7, if plotted on these 

scales, would show slopes of less than 

unity and a decrease in slope with in- 

creases in E. 
It should be noted that the proce? 

dure just given for calculating the value 

of E?that is, taking the difference be? 

tween the two normal-deviate values? 
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is not adequate when the operating- 
characteristic curve has a slope other 
than unity, for then a single curve will 

produce different values of E, depend- 
ing on which point along the curve is 

chosen. A satisfactory convention often 
followed in this case is to determine 
the value of E from the point where 

the curve crosses the negative di- 

agonal. 
Validating requirements. The valid- 

ity of the decision-theory model and 
measurement techniques for a given 
retrieval system can be tested by de- 

termining the operating-characteristic 
curve experimentally. Four or five 

data points, spread over a range of 

Prp(R) from approximately 0.10 to 

0.90, will establish whether or not the 

curve rises steadily, and, if it does, 
these four or five points will establish 

its slope. Each data point must, of 

course, be based on a large enough 

sample to provide a fairly reliable point 
estimate of a probability. This is ad- 

mittedly a large number of data, more 

than many investigators would at pres? 
ent consider economically feasible to 

obtain. There is, unfortunately, no 

substitute for adequate numbers of 

data if retrieval systems are to be 

evaluated on an empirical basis. Per- 

haps a small offsetting consideration 

is the fact that results can be pooled 
for queries of the same breadth, or of 

the same logical form. 

It is possible to conduct further, and 

stronger, tests of validity. For retrieval 

systems that calculate something like 

the index of pertinence, z, additional 

information can be obtained by deter- 

mining directly the probability distribu- 

tions that underlie the operating char- 

acteristic. Other tests exist which may 
be applied appropriately to retrieval 

systems that do not provide an index 

comparable to z. An extensive testing 

program, originally designed for the 

study of signal detection in psychology, 
could be directly translated and applied 

to retrieval systems. A description of 
this program may be found elsewhere 

(16). For most purposes, however, a 
determination of the operating-charac- 
teristic curve should be adequate. 

If the empirical operating-character- 
istic curve obtained from a given re? 

trieval system is reasonably well fitted 

by a linear function on normal-deviate 

coordinates, the measure E is appro- 
priate to represent the effectiveness of 
that system. It is to be expected, on 
rational grounds, that the model will 
be found to apply generally to a vari- 

ety of retrieval systems. If this proves 
to be the case, there will be many cur- 
rent applications of the measure E. 
This outcome would greatly facilitate 

performance-cost analysis of available 
retrieval systems (17). 

References and Notes 

1. C. P. Bourne, G. D. Peterson, B. Lefkowitz, 
D. Ford, Stanford Res. Inst. Proj. Rept. No. 
3741 (1961). 

2. H. Bornstein, Am. Doc. 12, 254 (1961). 
3. R. E. Wyllys, Trans. Congr. Inform. System 

Sci., Hot Springs, Va., lst (1962). 
4. J. Verhoeff, W. Goffman, J. Belzer, Commun. 

Assoc. Computing Machinery 4, 557 (1961) 
5. D. R. Swanson, Science 132, 1099 (1960). 
6. H. Borko, System Development Corp., Santa 

Monica, Calif., Field Note No. 5649/000/ 
01 (1961). 

7. C. N. Mooers, Zator Company, Cambridge, 
Mass., Tech. Note No. RADC-TN-59-160 
(1959). 

8. J. W. Perry and A. Kent, Eds., Tools for 
Machine Literature Searching (Interscience, 
New York, 1958), pp. 3-18. 

9. C. W. Cleverdon, Association of Special Li- 
braries and Information Bureaux, Cranfield, 
England, Interim Rept. (1962). 

10. D. R. Swanson, paper presented at the Con- 
gress of the International Federation of Infor? 
mation Processing Societies, Munich (1962). 

11. M. E. Maron and J. L. Kuhns, J. Assoc. 
Computing Machinery 7, 216 (1960). 

12. H. M. Wordsworth and R. E. Booth, West- 
ern Reserve Univ. Tech. Note No. 8, AFOSR- 
TN-59-418 (1959). 

13. A. Wald, Statistical Decision Functions 
(Wiley, New York, 1950). 

14. W. W. Peterson, T. G. Birdsall, W. C. Fox, 
IRE (Inst. Radio Engrs.) Trans. Information 
Theory 4, 171 (1954); D. Van Meter and D. 
Middleton, ibid., p. 119. 

15. W. P. Tanner, Jr., and J. A. Swets, Psychol. 
Rev. 61, 401 (1954); J. A. Swets, Psycho- 
metrika 26, 49 (1961). 

16. J. A. Swets, Science 134, 168 (1961). 
17. The preparation of this article was supported 

by a grant from the Council on Library Re- 
sources, Inc. Lewis and Judith Clapp gave 
helpful advice and greatly facilitated the re? 
view of relevant literature. 

SCIENCE, VOL. 141 


	Cit r22_c23: 


