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CURRENT PROBLEMS IN RESEARCH

Electrical Resistivity

at Low Temperatures

The pressure dependence of the electrical resistance
of metals gives some clues about their Fermi surfaces.

During this century there have been
many investigations of the dependence
of electrical resistivity of metals on
temperature and pressure (/, 2). Broad-
ly speaking, however, most of the tem-
perature measurements have been made
at atmospheric pressure, and most of
the pressure measurements have been
made at temperatures around room
temperature. I would like here to de-
scribe some ecxperiments which com-
bine the two kinds of measurements
and which are designed to find out
how resistivity depends on pressure at
low temperatures.

Why do we want this information?
I shall first try to answer this question
by contrasting the changes brought
about by variations of temperature with
those brought about by variations of
pressure. We may think of a solid
mctal as consisting of a lattice of posi-
tive ions agitated by thermal vibrations
and of an interpenetrating gas of con-
duction electrons. For many purposes
we may discuss. the metal in terms of
its energy levels—for example, the
energy levels associated with the normal
modes of vibration of the lattice or the
allowed kinetic energy levels of the con-
duction electrons. In general, if the
volume does not change, these energy
levels do not change, and an alteration
of the temperaturc simply alters the
distribution of the electrons or lattice
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vibrations among these levels. But if
the volume changes, then the levels
themselves also change. Thus, changing
the temperaturc at fixed volume acts
as a method (albeit a rather gross one)
of exploring how these levels arc dis-
tributed; altering the volume is a means
of changing them. A combination of
the two methods therefore cnables us
both to change the levels and to investi-
gate their properties after the change.

Having emphasized the different roles
of temperature and pressure changes,
I would now like to show that in certain
ways they are closely related. It is a
fact of experiecnce that the thermal
expansion coeflicient of most substances
is positive. Consequently, from the
thermodynamic identity cxpressed in
the equation:

(.2_5)1 - (—;—;)7 (1)

it follows that the entropy of such sub-
stances falls when they are isothermally
compressed. But now it is well-known
from thermodynamics that at constant
pressure the entropy of a substance also
falls when its temperature is lowered.
We therefore see that in this respect
an increase in pressurc is similar to a
decrease in temperature. Indeed, so
attractive is this idea that G. N. Lewis
(3) wished to use it as a basis for
extending the third law of thermo-
dynamics. His tentative statement of
such an extension was as follows: “At
all temperatures the entropy of a pure
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crystal is zero at infinite pressure.” The
proposal was necver in fact developed,
presumably because the extrapolation
to infinite pressure cannot usefully be
made: whatever the formal similarity
between increasing pressure and de-
creasing temperature, their actual physi-
cal effects are ultimately quite differ-
ent (4). For more restricted purposes,
however, this similarity is quite valid
and very useful, as I now hope to show.

The equilibrium lattice properties of
many metals can be discussed in terms
of a reduced temperature + = T/90,
where T is the actual temperature and
0 is the characteristic lattice tempera-
ture of the metal (for example, the
Dcbye temperature). 6, which ideally
is independent of T, is related to the
characteristic frequency of the lattice,
and if the lattice is compressed its char-
acteristic frequency, and hence f, in-
creascs. Thus the reduced temperature
may be decreased either by reducing
the actual temperature or by increasing
the pressure. This suggests that pres-
sure coecfficients and temperature co-
cfficients must be related. Take, as an
example, the lattice entropy S, which
depends only on 7/6. Thus

(3) =S
cT)y 8
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Therefore
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Herc [ have introduced the parameter
v (which equals — dIn6/dInV),
called the Griincisen parameter. We
thus see that the volume cocfficient
of entropy is related to the temperature
coefficient of entropy by the parameter
v. In fact, a thermodynamic trans-
formation of this equation leads to
Griineisen’s law of thermal expansion:

(VN _ yBCy
N

where C,. is the specific heat at con-
stant volume, B is the compressibility,
and (1/V)[(8V/aT),] is the thermal
expansion coefficient. This relationship
then affords a means for determining y
(which measures the change of 6§ with
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Fig. 1 (left). The electrical resistivity of potassium as a function of temperature. The solid line shows the resistivity at a fixed
vqlume (that at 0°K under zero pressure); this is the quantity which is most convenient for direct comparison with theory. Fig. 2
(right). The pressure coefficient of electrical resistivity of lithium, sodium, and potassium as a function of temperature at constant

density (13).

volume) in terms of readily observable
quantities.

Considerations of this kind can also
be applied to the discussion of the
pressure dependence of the electrical
resistivity of metals, but first I must
describe briefly how this resistivity de-
pends on the temperature (5). It is
convenient to distinguish between two
sources of electrical resistivity: (i) a
temperature-dependent part p; (the
ideal resistivity), due to the thermal
vibrations of the lattice, which vanishes
as the temperature approaches zero,
and (ii) a temperature-independent part
po (the residual resistivity), which is
due to chemical and physical imperfec-
tions in the lattice.

In a perfectly periodic lattice the
conduction electrons can move without
hindrance; that is to say, the electrical
resistance of the metal is then zero. If
physical imperfections or chemical im-
purities are introduced into the lattice,
these will then upset the perfect peri-
odicity and cause electrical resistance
by scattering the electrons when they
are accelerated by an electric field. If,
in addition, the lattice temperature is
raised so that thermal vibrations of the
ions begin, these vibrations also con-
tribute to the electrical resistance. The
part of the resistance caused by the
lattice vibrations may be thought of as
approximately proportional to the mean
square amplitude of vibration of the
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ions. If the mass of the ions is M,
their characteristic vibrational fre-
quency is o, and their amplitude of
vibration is x, then at a high tempera-
ture T

Mo*x* = kT

by the classical theorem of the equipar-
tition of energy. Therefore, by intro-
ducing a characteristic temperature 6
such that ho = k0,

g=t I
Tk Meg*

and the resistivity due to thermal vibra-
tions, p;, is proportional to T/M§%. At
the lowest temperatures p; is no longer
proportional to the mean square ampli-
tude of the lattice vibrations because
at these temperatures the lattice waves
are less efficient in scattering electrons;
in fact, p;<T%/6° in this temperature
region. In quantum language, it is usual
to discuss the scattering of electrons by
lattice waves in terms of “phonons.”
A phonon is a quantum of lattice
energy analogous to the photon in elec-
tromagnetic radiation. The total num-
ber of phonons in the lattice varies as
T at high temperatures and as I° at
low temperatures. The temperature de-
pendence of the number of phonons
largely determines the temperature de-
pendence of the ideal resistivity. At low
temperatures, however, the “momen-

tum” of the phonons falls off and the
resistivity, as indicated above, falls off
as T°—that is, more rapidly than the
number of phonons. Figure 1 illustrates
the temperature dependence of the
electrical resistivity of a typical mono-
valent metal, potassium.

If the effect of pressure on the ideal
electrical resistivity arises solely from
the change produced in 6, we should
expect that at high temperatures

dlnp; _ 2dIng
and at low temperatures
dlnp;, _ _ 6dIne
dp dp )

Since 6§ increases with pressure, we see
at once that as far as the lattice con-
tribution is concerned the effect of
pressure is to diminish the electrical
resistivity (6). Moregver we see that
the pressure coefficient of ideal resis-
tivity at low temperatures should be
three times that at high temperatures.
Figure 2 shows how the pressure co-
efficient of resistivity of lithium, sodi-
um, potassium, and copper varies with
temperature. The temperature depend-
ence is of the general form to be
expected. Note, however, that in lithi-
um the pressure coefficient at high
temperatures is anomalous, being posi-
tive.
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In more general terms, there are
theoretical grounds for believing that

L= ’TS f(T/6x)

where K measures the interaction be-
tween the conduction electrons and the
lattice vibrations and f, is a tempera-
ture characteristic of the resistive prop-
erties of the lattice (/). (The results
[ have already quoted are simply special
cases of this, indicating that at high
temperatures f(7T/0) approaches
T/6z% and at low temperatures,
T¢/0g%.) This relationship means that
the product p,T is a function of a
reduced temperature 7 equal to T/40,,
and we may expect, by analogy with
the bechavior of the thermodynamic
propertics of the lattice, to relate the
pressure cocfficient of clectrical resis-
tivity at a given temperature with the
temperature coefficient of electrical
resistivity at that temperature. In theo-
retical considerations it is more logical
to work in terms of volume coefficients;
in these terms the relationship is as
follows (6):

dinp; _dInK dlnon( (Ilnp.->
n vV YT ) ®

dinV ~dlnV dhVv

The term dIn K/d In V, which depends
on the properties of the conduction
clectrons and on the static lattice,
should be effectively independent of
temperature at normal and low tem-
peratures, as is also the term d1In 0,/
dInV. This relationship, therefore,
tells us that the volume coefficient and
the temperature coefficient of the ideal
resistivity are linearly related; this in
turn means that dlnp;/dInV will
change with temperature only at tem-
peratures at which dlnp;/d InT itself
changes. This conclusion explains why
we must make measurements at low
temperatures if we wish to find any
temperature variation of the pressure
dependence of electrical resistivity,
since a glance at Fig. 1 shows that only
at low temperatures does the tempera-
ture coefficient of resistance change
significantly.

Equation 6 means that if we measure
the pressure and temperature coeffi-
cients over a suitable temperature range
we can determine dInfy/din V and
dIn K/dInV separately, in this way
distinguishing the lattice contribution to
the pressure coefficient from the con-
tribution of the electron properties.
Before comparing the experimental
results with these theoretical predictions
I should like to say something about
the experimental methods.
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Hydrostatic Pressure at

Low Temperatures

The application of hydrostatic pres-
sure at low temperatures (7) presents
a problem because all substances be-
come solid under pressure at these
temperatures; at pressures above about
30 atmospheres therc are no true fluids
at the lowest temperatures. The sub-
stance which retains its fluid properties
at a given pressure to the lowest tem-
perature is helium (the He® isotope is
very slightly, though for our purposes
not significantly, better than the He*
isotope in this respect). For that reason,
and also because solid helium can be
used to produce an effectively hydro-
static pressure, we have used this sub-
stance as our pressure transmitting
medium (8, 9). Other solids can of
course be used for this purpose [Hatton
(/0) used solid hydrogen], and for
some purposes the solid to be studied
can act as its own pressurc medium;
that is to say, the metal is directly com-
pressed in a cylinder by a piston with-
out any intervening substance (see /7).

In Fig. 3 is shown part of the melting
curve of He* (/2). Points to the right
of and below this curve correspond to
the fluid phase, and as long as we are
using this phase the application of pres-
sure is quite straightforward. To under-
stand how pressures and temperatures
corresponding to the solid phase are

produced, we must know something of
the equation of state of the solid. This
information is also indicated in Fig. 3,
in which it is shown how the pressure
in the solid varies with temperature at
various fixed volumes (72). It may be
seen that at constant volume the pres-
surc in the solid is not very dependent
on the temperature; this is because in
solid helium most of the pressure arises
from the vigorous zero-point motion of
the helium atoms and is thus inde-
pendent of the temperature (inciden-
tally, it is this strong zero-point motion
which makes liquid hclium the stable
phasc at 0°K at normal pressures).
Our technique of applying high pres-
sures in the solid state can be described
as a constant-volume method. The
pressure is first applied at such a tem-
perature that the helium is still just
fluid—that is, at a temperature close to,
but to the right of, the melting curve
shown in Fig. 3. The high-pressure
bomb is then closed off so that the
helium is kept effectively at constant
volume, and it is then cooled to the
required low temperature. In this proc-
ess, in which the helium becomes solid,
about one-quarter of the applied pres-
surec is lost. However, the pressure
existing in the bomb in the final state
can be deduced from a knowledge of
the initial density (which is also of
course the final density) and the final
temperature. Our measurements have
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Fig. 3. Part of the melting curve of He‘ and the lines of constant volume in the solid.
The figures give the corresponding molar volume in cubic centimeters. [After Dugdale

and Simon (12)]
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shown that this technique of applying
pressure by means of solid helium does
in fact produce a very close approxima-
tion to hydrostatic pressure (9).

Our measurements so far have been
confined to the monovalent metals—in
particular to copper and the alkali
metals, except cesium (9, 13). Alkali-
metal specimens used in the measure-
ments of resistance at low temperatures
~have usually been enclosed in glass
capillaries because the metals are chem-
ically very reactive and mechanically
very soft. For the measurement of
pressure effects such specimens are not
satisfactory, and we have used extruded
bare wires mounted loosely on insulated
formers; a photograph of such a speci-

men is shown in Fig. 4. The photo-
graph shows the specimen mounted in
position and ready to be enclosed by
the high-pressure bomb, which is made
of beryllium copper; the high-pressure
seal is made by means of a steel lens
ring.

Expectations and Findings

As already mentioned, we expect a
linear relation between the logarithmic
volume coefficient of ideal - resistivity
and the logarithmic temperature co-
efficient of ideal resistivity. Figure 5
shows that such a linear relationship
does in fact exist (9, 13) for those

Fig. 4. A photograph of a typical alkali metal specimen wound on an insulated former.
At right is the beryllium-copper bomb which encloses the specimen.
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metals (lithium, sodium, potassium, and
copper) for which the necessary data
are available. In these graphs I am
referring to the high-temperature modi-
fications of sodium and lithium—that
is to say, the body-centered cubic
phases. At low temperatures both these
metals partially transform to a close-
packed phase; in lithium this trans-
formation affects the pressure coeffi-
cient of resistivity so greatly that no
reliable results have been obtained
below about 75°K on this metal.

From the curves in Fig. 5 we can
deduce for each metal the two quanti-
ties dln0y/dInV and dinK/dInV.
These values are given in Table 1. For
comparison, the Griineisen parameter
vy [or — dInéy/dinV (14)], which,
as I showed earlier, can be evaluated
from readily available thermodynamic
data, is also included; it is evident that
the change of 0, with volume is quite
similar to that of 6, as one might
expect. Although accurate pressure
measurements over a sufficiently wide
temperature range have so far been
made on only the four metals men-
tioned, the quantity dInK/dInV,
which can be derived from high-tem-
perature measurements only, by as-
suming that — dIn@z/dInV equals y
(the Griineisen paranieter), has been
derived for all the monovalent metals.
The results are presented in Table 2
(columns 2, 3, and 4); the data for
cesium are rather uncertain.

In order to understand why some of
these values of d In K/d1n V are posi-
tive and why some are negative, it is
necessary to digress and to explain
something more of the behavior of the
conduction electrons (5). Although it
often gives a good approximation to
imagine the conduction electrons mov-
ing through the ionic lattice as though
they were free electrons (apart from
the scattering processes which I have
mentioned), it is in general necessary
to take account of the fact that their
motion is in fact modified by the
periodic potential inside the static
crystal. This can often be done by
assigning an “effective” mass to the
electron which differs from its true mass
but takes account of interaction with
the lattice potential. Another important
feature of the electron motion arises
from the fact that electrons obey the
Pauli exclusion principle. At the abso-
lute zero of temperature the electrons
take up a configuration of minimum
energy which, classically, would be one
of zero kinetic energy—that is, with
all the electrons at rest. Because of the
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Table 1. Data on resistivity for lithium, sodium,
potassium, and copper.

Griineisen

dln 6g din K
Metal IV paraineter Tin v
Li 1.0 0.9 -3
Na 1.3 1.3 + 1.8
K 14 1.3 + 2.9
Cu 2.3 2.0 — L.

exclusion principle, however, this is not
possible, since each state of kinetic
energy can be occupied by only two
electrons (of opposite spin). Conse-
quently the electrons “fill up” all the
lowest kinetic-energy levels available to
them until all the electrons are accom-
modated. Therefore, at the absolute
zero of temperature all the lower
kinetic-energy levels are filled up to a
certain value E,, and above this the
levels are all empty. The value of E,
in a typical monovalent metal, if ex-
pressed as an equivalent temperature,
is around 50,000°K—in other words,
this is the temperature to which a clas-
sical electron gas would have to be
heated to have a similar kinetic energy.
It is evident from this that even at
room temperature the additional kinetic
energy of the electrons that is due to
thermal motion is tiny as compared to
their zero-point energy, so that for some
purposes we can treat the electrons as
being effectively at 0°K. The maxi-
mum energy E, of the electrons at 0°K
(or more generally, their chemical po-
tential) is referred to as the Fermi
energy of the electrons, E,, and this
quantity varies with volume; in the
simplest approximation of quasi-free
electrons, E, o« V2/3,

How are the electron velocities dis-
tributed over the various directions in
space? In an ideal gas the distribution
would be isotropic—that is, the average
velocity would be the same in all direc-
tions. In discussing electrons in metals
it is more convenient to work, not
directly with the electron velocity or
momentum, but (since the properties
of electrons are governed by wave
mechanics) with the electron’s wave
number k, which in the case of com-
pletely free electrons would be related
to the momentum by the De Broglie
relationship hk = p. The energy of
such electrons (of mass m) is given by
E = h%k?/2m, so if we plot the com-
ponents of k, k,, k,, and k, along car-
tesian axes (k-space), the surfaces of
constant energy would therefore be
spheres (corresponding to an isotropic
distribution of velocities). The surface
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corresponding to the Fermi energy of
the electrons is called the Fermi sur-
face. If the electrons are not free but
are influenced by the potential field of
the lattice, then the Fermi surface will
no longer be a sphere but will be more
or less distorted, depending on the
influence of the lattice potential; the
symmetry of the Fermi surface taken
as a whole is closely related to that of
the crystal. The importance of the
Fermi surface arises from the fact that
only electrons close to the Fermi sur-
face have unoccupied electronic levels
in their neighborhood—in other words,
these are the only electrons which can
be thermally excited (at normal tem-
peratures) or scattered by lattice waves
or impurities.

The wavelike properties of electrons
imply that, like x-rays, electrons in a
crystal may suffer Bragg reflections.
Thus, if an electron propagating in a
certain direction in the crystal has just
the right wavelength to satisfy the
Bragg condition, it will be reflected by
the appropriate lattice planes. Suppose
that we choose some particular direc-
tion in the crystal and then find the
minimum value of & which an electron
propagating in that direction must have
to satisfy the Bragg relation; suppose,
further, that we do this for all possible
directions. Then if we draw these
k-vectors from the origin in k-space,
it turns out that their ends lie on a
polyhedron about the origin, this poly-
hedron having the symmetry of the
lattice. This polyhedron is referred to
as the first Brillouin zone of that lattice,
and it is relevant to any kind of wave
that can propagate through the lattice
(in particular lattice waves and elec-
trons). If for the electrons we draw
surfaces of constant energy in k-space,
all those surfaces lying within the
Brillouin zone are continuous, whereas
those surfaces which intersect the zone
boundary will, in general, suffer a dis-

dinp;
I}" dinT ]
Fig. 5. The logarithmic volume coefficient
of the ideal resistivity of lithium, sodium,
potassium, and copper, shown as a func-

tion of the logarithmic temperature co-
efficient.

continuity; there is in fact a forbidden
energy region at the zone boundaries
such that electrons with energies lying
within this range cannot propagate in
the lattice.

The volume of the zone in k-space
is such that if the crystal has N atoms
per unit volume (7/5), then the zoné
can accommodate N electrons of a
given spin, uniformly distributed
throughout the zone. Since electrons
can exist in two independent spin states
of the same wave vector, the zone can
contain just 2N electron states,

This latter conclusion has the follow-
ing important consequence. In a mono-
valent metal, which has just one con-
duction electron per atom, the Fermi
surface which encloses all the electron
states in k-space must therefore com-
prise a volume equal to half that of the
Brillouin zone. This in turn means that
if in cubic monovalent metals the Fermi
surface is nearly spherical it can be
entirely contained within the first zone
without anywhere touching it. This

Table 2. Data on resistivity for the monovalent metals.

dln P 27
vear g 2 gt (GnE) = S/ o o o Mo

at 0°C 14
Li —0.49 1.8 —2.3 6.7 —-0.3 369t 385t 1.04 7.2
Na 4.6 2.6 2.0 —2.7 —-0.7 152% 205% 1.35 2.0
K 5.7 2.6 3.1 —3.8 —0.8 90 116 1.29 2.0
Rb 3.7 3.0 0.7 —2.3 —-0.3 55 58 1.06 3.1
Cs “4) 3.2 —-0.2 40 45 1.13 4.4
Cu 3.0 4.0 —1.0 +1.6 —0.6 344 333 0.97 8.4
Ag 3.9 4.8 —0.9 +1.1 —0.8 225 223 0.99 6.3
Au 5.5 6.2 —-0.7 +1.5 -0.5 165 175 1.06 13.5

* The value for cesium was taken from MacDonald (I). The other values of fr were taken from

(13) and (9) for the alkali metals and from (27) for the noble metals.

1 Two-phase mixture.

i Estimated value for the body-centered cubic phase.

81



Fig. 6. A model of the first Brillouin zone
of a body-centered cubic lattice. The
sphere occupies half the volume of the
zone.

situation is illustrated in Fig. 6, which
shows a model of the first Brillouin
zone of a body-centered cubic lattice
containing a sphere whose volume is
just half that of the zone. Figure 7
shows a two-dimensional square lattice,
its two-dimensional Brillouin zone and
the Fermi “circle” having an area of
just half that of the zone. In Fig. 7
(a, b, ¢, and d) I have shown, purely
schematically, the progressive distortion
of the Fermi surface; in d this surface
is in marked contact with the Brillouin
zone. In general, distortion of the
Fermi surface causes those regions
which are nearest the zone boundaries
to become even closer.

A great deal is now known about the
Fermi surfaces of the noble metals from

a variety of techniques which give
direct information about the shape and
other features of the Fermi surface
(16). These methods agree in showing
that the Fermi surfaces in copper, sil-
ver, and gold all touch the zone bound-
ary. About the alkali metals we have
as yet no direct evidence, but indirect
evidence suggests that the Fermi sur-
faces of sodium and potassium are
nearly spherical, that the Fermi surface
of rubidium is somewhat distorted, and
that the Fermi surfaces of lithium and
cesium are much more distorted, per-
haps touching the Brillouin zone
boundary (17, 18). The effects of such
distortion on electrical resistivity are
discussed later.

When an electric field is applied to
a metal the conduction electrons are
accelerated and the whole Fermi sur-
face begins to move in the direction
of the field (see Fig. 8). The electrons,
however, are prevented from continu-
ous acceleration in the field by collisions
with phonons (we are considering only
the ideal resistivity), and the Fermi-
surface movement is almost vanishingly
small. The effect of the distortion of
the Fermi surface on the scattering of
electrons by phonons is a difficult
theoretical problem, and detailed studies
have only recently been made (19).
One of the most important effects arises
from a type of scattering process called
an “Umklapp” process, which gives rise
to large angle scattering of the elec-
trons.

First consider a typical normal scat-
tering process in which an electron of
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Fig. 7. A two-dimensional square lattice and the corresponding first Brillouin zone.
(a) The Fermi “circle” corresponding to one electron per atom; (b), (c), and (d),
progressive distortions of the Fermi surface (schematic).
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wave vector k is scattered by a phonon
of wave vector g into a new state of
wave vector k’; k, k', and q are related
by the vector condition that k — k" = gq.
Moreover, the phonon energy at all
normal and low temperatures is very
small compared with the Fermi energy
of the electrons. Since only those elec-
trons near the Fermi level have neigh-
boring unoccupied states into which
they may be scattered, the scattered
electron must both start and end effec-
tively at the Fermi surface. Figure 9
shows the geometry of a normal scatter-
ing process. As mentioned earlier, the
Brillouin zone governs the behavior of
all kinds of waves that can propagate
through the metal, including lattice
waves; the biggest wave vector that a
phonon can have is one which reaches
from the center of the zone to the
zone boundary. This therefore limits
the angle through which an electron
may be scattered in a normal process,
even at the highest temperatures. At
low temperatures, where only low-
energy phonons (having therefore small
wave vectors) are excited, the angle of
scattering is even further limited in such
processes.

An Umklapp process may be inter-
preted as one in which the electron is
scattered by a phonon and also under-
goes a Bragg reflection. In vector terms,
the well-known Bragg condition is rep-
resented by the equation k' — k =R,
where R is a reciprocal lattice vector.
In Fig. 7 the vectors R’ and R” are two
reciprocal lattice vectors for the simple
square lattice. Thus, in an Umklapp
process the vector condition

k—k=gq
is replaced by

)

kk—k=qg+R (€))

where R is a reciprocal lattice vector.
Such a process is illustrated in Fig. 10.
Its importance lies in the fact that,
because the large vector R enters into
the process, it makes possible scattering
at wider angles than can occur in a
normal process. This can also be seen
by a geometrical construction. Equa-
tion 8 may be rewritten as

k4+R=FkK—q

and we begin by representing graphi-
cally all the possible vectors k + R.
Since the k vectors of all electrons
which can be scattered must lie on the
Fermi surface, the vectors k + R’, for
example, must lie on the same surface
displaced by the vector R’; the same is
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true for the other reciprocal lattice
vectors. Thus, the possible X + R vec-
tors lie on a set of surfaces consisting
of the original Fermi surface suitably
displaced, as in Fig. 11. In order to
satisfy the requirement of conservation
of energy, all the vectors k' of the elec-
trons after scattering must lie on the
original Fermi surface; so, to satisfy
Eq. 8, we must look for vectors — g
which go from one of the repeated
Fermi surfaces back to the original
Fermi surface. Such phonon vectors,
illustrated in Fig. 11, give rise to
Umklapp processes.

If the Fermi surface does not touch
the zone boundary, then g must exceed
a certain minimum value or else Um-
klapp processes are impossible. This
minimum value is equal to the distance
of closest approach of two adjacent
Fermi surfaces—for example, the vec-
tor CD in Fig. 11. An Umklapp proc-
ess with this minimum vector scatters
the electron through the maximum
angle of 180° (Fig. 12). g vectors
which are larger than the minimum
usually produce rather smaller scatter-
ing angles; nevertheless all Umklapp
processes in a monovalent metal cause
comparatively large angle scattering.

The existence of a minimum value of
g for Umklapp processes means that at
low temperatures the number of such
processes must begin to fall off because
the number of phonons with a large
enough wave vector begins to fall off.
Thus, the shape of the Fermi surface
can influence the temperature depend-
ence of electrical resistivity at low tem-
peratures. It also affects the magnitude
of the resistivity, since at all tempera-
tures the more closely the Fermi surface
approaches the zone boundary the
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Fig. 8 (left). Displacement of the Fermi surface under the influence of an electrical field.
Fig. 9 (middle). A “normal” scattering process. Fig. 10 (right). An Umklapp process.

greater is the number of phonons that
can take part in Umklapp processes.
Since, as has been emphasized, these
are wide-angle scattering processes, this
implies that the nearer the Fermi sur-
face is to the zone boundary the higher
is the electrical resistivity, other things
being equal. (By “other things” I mean
in particular the number of phonons
available for scattering the electrons;

this point is discussed in more detail
in the next paragraph.) Distortion of
the Fermi surface changes not only the
number of possible Umklapp processes
but also, for example, the velocity of
the electrons at the Fermi level, and
this too can alter the resistivity. In
general, however, it seems that, if the
resistivities of the monovalent metals
are compared under conditions such as

(S

%

Fig. 11. Repeated zone scheme to illustrate the possible wave vectors which can give

rise to Umklapp processes.
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Fig. 12. Electron scattering through 180° by a phonon having the minimum wave

number which can cause an Umklapp process.

to eliminate the effects of their different
lattice properties, the more distorted the
Fermi surface the higher the resistivity.
With these ideas in mind let us now
look at the magnitude of the resistivities
of the monovalent metals.

In comparing the resistivity of differ-
ent metals it is important to compare
not the resistance p of a cube of side
1 centimeter but rather that of a cube
containing, for example, 1 gram atom
of material—that is, the atomic resis-
tivity p/V1/3 where V is the gram-
atomic volume. Moreover, in order to
bring out the dependence of the resis-
tivity on the properties of the electrons
(for example, the shape of the Fermi
surface), the resistivities must be com-
pared at temperatures at which the
lattices are in similar states—that is,
at temperatures at which the amplitude
of the lattice vibrations is some certain
fraction of the interatomic distance.
This means that, in the high-tempera-
ture “classical” region, one should com-
pare not the atomic resistivities but
rather the “reduced” atomic resistivities
p(M62V1/3/T). (The derivation of this
result is rather similar to that of the
Lindemann melting formula; here M is
the mass of the ions and 6, the char-
acteristic lattice temperature.) The
actual temperature T is immaterial since
at high temperatures p/T tends to reach
a constant value and it is this limiting
value, at constant density, which we
take. A -comparison of the reduced
resistivities is made in Table 2 (column
10), in which 4, is taken from specific
heat measurements (20). These Debye
g, values, which can be taken as a
measure of the temperature dependence
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of the phonons, are now quite well
established, although in sodium and
lithium the low-temperature crystallo-
graphic transformations introduce some
uncertainty. I should also point out

that, since the noble metals have a _

face-centered cubic structure while the
alkali metals have a body-centered
cubic structure (except for sodium and
lithium at low temperatures), the com-
parison between the two sets of metals
cannot be taken too literally, although
the general features should be correct.

It may be seen that of all the mono-
valent metals, potassium and sodium
are outstandingly good conductors,
rubidium and cesium are successively
poorer, and lithium and the noble
metals are worse still. Among the noble
metals, silver has the lowest reduced
resistivity. This classification corre-
sponds broadly with what is at present
known about the Fermi surfaces of the
monovalent metals.

Having considered the magnitudes let
us now consider the temperature de-
pendence of the resistivity. This is
largely governed by the temperature
dependence of the number of phonons
in the lattice—that is, by the Debye 0,.
But as we saw in discussing Umklapp
processes, the low-temperature resis-
tivity does not depend only on the
behavior of the phonons; it also de-
pends on the Fermi surface. If the
metal has a distorted Fermi surface,
the electrical resistivity tends to remain
higher (because of the increased num-
ber of Umklapp processes) at low tem-
peratures than that of a metal with a
spherical Fermi surface at the same
reduced temperature (that is, with the

same number of phonons excited).
Roughly speaking, 6, (which is a meas-
ure of the temperature dependence of
p;) is proportional to the lowest tem-
perature at which p; behaves classically
—that is, the temperature at which p;
departs from linearity with 7. This
temperature should therefore be lower
for metals in which Umklapp processes
can persist to lower temperatures. Thus,
we should expect 6/8, to vary with
the degree of distortion of the Fermi
surface; for a metal with a distorted
Fermi surface the ratio should be lower
than for a metal with an undistorted
Fermi surface. The values of this ratio
are given in Table 2 (column 9), and
they show roughly the sort of variation
we should expect: sodium and potas-
sium have exceptionally large values for
the ratio, the other metals have lower
values, Interestingly enough, these
lower values are all close to unity; why
the values of §, and 6 should be about
equal for these metals is not, I think,
altogether understood.

These comparisons suggest that the
pressure coefficients might likewise be
understood, at least qualitatively, in
terms of distortion of the Fermi surface.
Table 2 (column 4) shows that the
values of d In K/d In V, which measure
the change of interaction constant with
volume, do fit into the pattern. For
example, all the noble metals have neg-
ative values and so does lithium. These
are the monovalent metals with the
most distorted Fermi surfaces. Sodium
and potassium, the two metals with
nearly spherical Fermi surfaces, have
values of dIn K/dInV which are de-
cidedly positive; rubidium has an inter-
mediate value. For cesium the data
needed here are not reliable, but as we
shall see below, cesium too fits into the
general picture.

Although there is a clear correlation
between the pressure coefficients of
resistivity and distortion of the Fermi
surface, we still have to understand why
in a metal with a spherical Fermi sur-
face dIn K/dInV is positive whereas
in a metal whose Fermi surface touches
the zone boundary it is negative. This
is a theoretical problem which has not
yet been fully solved. Nevertheless, let
us consider first the example of a
spherical Fermi surface which, for sim-
plicity, we shall assume does not distort
under pressure (27). A positive value
for dIn K/d In V means that a decrease
in volume causes the electrons to inter-
act less with the lattice waves. Decreas-
ing the volume increases the Fermi

SCIENCE, VOL. 134




energy of -the electrons, and we may
interpret this result as meaning that as
the electron energy is increased the
electrons are less scattered by the lattice
waves. This conforms with the classical
idea that a body with greater kinetic
energy is scattered less by a given
obstacle than one with lower energy.

We have here assumed that on com-
pression of the lattice the Fermi-surface
distortion remains unchanged. While
this may be true of sodium for small
volume changes, theoretical calculations
show that this is not generally true
(/8). In general, in all the monovalent
metals, increasing the pressure on the
metal increases the distortion of the
Fermi surface; if the surface is already
touching the zone boundary, pressure
will increase the area of contact. Such
an increase in the distortion of the
Fermi surface under pressure, with the
consequent enhancement of Umklapp
processes, tends to increase the resis-
tivity. This was originally proposed as
an explanation of the anomalous posi-
tive pressure coefficient of resistance in
lithium (I7), and it seems probable
that the same basic mechanism occurs
in all the monovalent metals.

There are thus two opposing tend-
encies when a metal is compressed—
on the one hand an increasing distortion
of the Fermi surface, which increases
the interaction constant K, and on the
other hand an increase in the Fermi
energy, which, as suggested above, tends
to decrease K. The trend of the values
for dIn K/dInV leads us to suppose
that the more distorted the Fermi sur-
face is, the more prominent the first
effect becomes. This is perhaps plau-
sible, but without a careful theoretical
analysis it is not possible to say more.
Unfortunately such an analysis has not
yet been made. Nonetheless, quite em-
pirically, it does seem that in the mono-
valent metals, negative values of
dInK/dInV are associated with a
Fermi surface already in contact with
the zone boundary, and the large posi-
tive values, with a nearly spherical
Fermi surface. We might therefore
guess that if this parameter is about
zero this indicates that the Fermi sur-
face is just about to touch the zone
boundary.

Bridgman (22) has measured the
pressure dependence of the electrical
resistance of the alkali metals at room

2.00

RESISTANCE RATIO R/R,

t.00

VOLUME DEPENDENCE OF RESISTANCE OF THE ALKALI METALS

temperature up to very high pressures.
It is interesting to consider these curves
in terms of the distortion of the Fermi
surface which we have just been dis-
cussing. Bridgman’s results are shown
in Fig. 13, in which relative resistance
is shown as a function of the relative
volume. As I have already emphasized,
an important part of the change in ideal
resistivity with volume arises from the
change produced in 6. It is possible,
from a knowledge of the compressibility
of ‘the lattice as a function of volume,
to estimate how @ changes with volume.
Using this information and that in Fig.
13, I have estimated how the inter-
action constant K changes with volume
over the full range of pressures; these
results are shown in Fig. 14. Lithium
is remarkable in that, for it, K always
increases under compression; this has
already been discussed. The curve for’
cesium shows a pronounced minimum
when its volume has been reduced by
about 5 percent. We can now interpret
this to mean that at this volume (ap-
proximately), contact of the Fermi
surface with the Brillouin zone bound-
ary occurs. The behavior of rubidium
is rather similar, although for it the

THE INTERACTION CONSTANT K AS A FUNCTION OF VOLUME
FOR THE ALKALI METALS

VOLUME RATIO V/Vo

Fig. 13 (above). The change in electrical resistance with volume
of the alkali metals at 0°C. [From Bridgman (22)] Fig. 14
(right). The change in interaction constant K with volume for
the alkali metals. [Derived from Fig. 13]
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minimum is reached at a rather higher
pressure. Sodium and potassium behave
rather differently from the others: for
these two metals K increases rather
slowly after the minimum has been
reached. Nevertheless it seems that in
all these metals we are seeing the effect
on K of progressive distortion of the
Fermi surface.

Pressure Coefficients and

Thermoelectric Power

At high temperatures (temperatures
which are large as compared to the
characteristic temperature of the lat-
tice) the absolute thermoelectric power
of a metal § is related to its resistivity
by the following relationship (23):

S = (9

_ '772k2T<d In p(E))
3¢Er \ diInE /E=Ey

(k is Boltzmann’s constant and e is the
electronic charge). This relationship
(24) expresses the fact that the thermo-
electric power of a metal depends on
how the resistivity of the metal varies
with its Fermi energy, and from the
measured values of the thermoelectric
power of a metal at high temperature
it is thus possible to obtain a measure
of this variation through the quantity

_(c]lnpw))
** \4dnE JE=E:

One way of altering the Fermi energy
of a metal is to compress it. Thus there
should be some relationship between
the volume coefficient of resistivity and
the value of x for that metal. It is not
to be expected that x will be related to
the total change of resistance due to
the volume change because this involves
the change in the amplitude of the
lattice vibrations, which has no counter-
part in x. If, however, we eliminate
the part due to changes in the lattice
vibrations and consider dln K/d1n V,
we might expect that this would be
related to x. In Table 2 a comparison
of these quantities is made for the
monovalent metals, and the ratios are
listed (column 6). If the change in K
with volume were due entirely to the
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change in the Fermi energy E, with
volume and if the Fermi surface did
not distort under pressure, this ratio
would be simply dln Ep/dInV. For
a spherical Fermi surface this has the
value — 2/3, since Ej, is proportional
to V=2/3. It may be seen that for all
the metals the value lies between — 0.3
and — 0.8; in particular for sodium
and potassium, the two metals whose
Fermi surfaces are most nearly spheri-
cal, the value of the ratio is quite close
to —2/3.

If the interpretation given above of
the minimum in the resistance-versus-
pressure curve of cesium is correct, and
if the thermoelectric power is intimately
related to the quantity dln K/dInV,
the thermoelectric power of cesium
should be very sensitive to pressure
and should in fact change sign at quite
modest pressures (pressures similar to
that required to reduce the resistance
to its minimum value). Recent meas-
urements on the thermoelectric power
of cesium at 0°C (25) show that this
change of sign does indeed occur and
that the thermoelectric power of cesium
is extremely sensitive to pressure; it
changes by nearly 1/2 percent per
atmosphere.

To sum up, we may say that the pres-
sure coefficient of the ideal resistivity
of a metal changes appreciably only at
low temperatures (7 < 6/3); more-
over, experiments show that this change
is related to the change in the tempera-
ture coefficient of resistivity in the way
that theory predicts. There appears to
be a close connection between the elec-
tronic contribution to the pressure co-
efficient of resistance on the one hand
and the thermoelectric power of the
metal on the other. When one comes
to consider the magnitude of the pres-
sure coefficient it is clear that in some
metals, notably lithium, cesium, and the
noble metals, this can only be under-
stood in terms of the distortion of the
Fermi surface of the metal. This dis-
tortion is also reflected in the tempera-
ture dependence and the magnitude of
the resistivity. All this emphasizes how
desirable it would be to obtain direct
information about the shape of the
Fermi surfaces in alkali metals (26).

10.
. C. A. Swenson, ibid. 99, 423 (1955).
12.

13.
. 6p is the Debye temperature which character-

15.

16.

17.

18.

20.

21.

22.

23.

24,
25.

26.

217.

References and Notes

. See, for example, the review by D. K. C.

MacDonald in Handbuch der Physik, S.
Flugge, Ed. (Springer, Berlin, 1956), vol. 14,
p. 137.

. P. W, Bridgman, The Physics of High Pres-

sure (Bell, London, 1949).

. G. N. Lewis, Z. physik. Chem. (Leipzig) 130,

532 (1927).

. I remember hearing Professor Bridgman de-

scribe how he subjected a raw egg to high
pressure. When he examined it afterward it -
appeared as if it had been hard-boiled.

. For a general account of the theory of elec-

trical resistivity, see, for example, J. M.
Ziman, Electrons and Phonons (Oxford Univ.
Press, New York, 1960). -

. E. Griineisen, Ann. Physik. 40, 543 (1941).
. For a survey of recent high-pressure tech-

niques and measurements see C. A. Swenson,
in Solid State Physics, F. Seitz and D. Turn-
bull, Eds. (Academic Press, New York, 1960),
vol. 11, p. 41.

. J. S. Dugdale and J. A. Hulbert, Can. J.

Phys. 35, 720 (1957).

. J. S. Dugdale and D. Gugan, Proc. Roy. Soc.

(London) A241, 397 (1957).
J. Hatton, Phys. Rev. 100, 681 (1955).

J. S. Dugdale and F. E. Simon, Proc. Roy.
Soc. (London) A218, 291 (1953).

J. S. Dugdale and D. Gugan, in preparation.
izes the temperature dependence of the
specific heat.

For simplicity the discussion is restricted to
body-centered and face-centered cubic lattices
which are Bravais lattices.

A. B. Pippard, Phil. Trans. Roy. Soc. London
A250, 325 (1957); D. Shoenberg, Phil. Mag.
5, 105 (1960); R. W. Morse and J. D.
Gavenda, Phys. Rev. Letters 2, 250 (1959);
R. W. Morse et al., ibid. 4, 605 (1960).

M. H. Cohen and V. Heine, Advances in
Physics (Phil. Mag. Suppl.) 7, 395 (1958).
F. S. Ham, in The Fermi Surface, W. A.
Harrison and M. B. Webb, Eds. (Wiley, New
York, 1960).

. J. Collins and J. M. Ziman, in preparation;

J. Collins, in preparation. I am indebted to
Dr. Collins for information about this work
before publication.

0o is the limiting value of the Debye 4 at
the absolute zero of temperature.

Even under compression the Fermi surface
must continue to occupy the same proportion
of the Brillouin zone (here, one-half). If,
therefore, the shape of the surface does not
change under compression, the geometry in
k-space of the scattering processes is un-
changed.

P. W. Bridgman, Proc. Am. Acad. Arts Sci.
81, 169 (1952); 76, 55 (1948).

N. F. Mott and H. Jones, The Theory of the
Properties of Metals and Alloys (Oxford
Univ. Press, New York, 1936).

This expression ignores any phonon drag
effects.

J. S. Dugdale and J. N. Mundy, Phil. Mag.,
in press.

It is a pleasure to acknowledge the collabora-
tion of Dr. D. Gugan in much of the experi-
mental work described here. I am very
grateful to Dr. D. K. C. MacDonald for his
encouragement and interest at all times and
wish to thank him and Dr. A. V. Gold for
many valuable discussions and for reading the
manuscript.

W. Meissner, in Handbuch der Experimental-
physik, W. Wien and F. Harms, Eds. (Aka-
demische Verlagsgesellschaft, Leipzig, 1935),
vol. 11, pt. 2, p. 1.

SCIENCE, VOL. 134



