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CURRENT PRORIAEMS IN IlESEAIlCH 

. . .  
Electrical Resistivity 

at Low Tem1)eratures 

The pressure dependence of the electrical resistance 
of metals gives some clues about their Fermi surfaces. 

During this century thcre havc bcen 
many investigations of the depcndcnce 
of clcctrical resistivity of mctals on 
tcmperature and prcssure (1,  2 ) .  Broad- 
ly speaking, howcvcr, most of the tcm- 
pcrature nieasuremcnts have been made 
at  atmospheric prcssure, and most of 
thc pressure nieasurcments havc bcen 
made at  temperatures around room 
tcmperature. I would likc here to dc- 
scribe some cxpcrinicnts which com- 
bine the two kinds of nieasurcments 
and which are designed to find out 
how resistivity depends on pressurc at 
/ow tcmperatures. 

Why d o  we want this information? 
I shall first try to answcr this q ~ ~ e s t i o n  
by contrasting the changcs brought 
about by variations of temperature with 
those brought about by variations of 
pressure. Wc may think of a solid 
rnctal as consisting of a lattice of posi- 
tive ions agitated by thcrnial vibrations 
and of an interpenetrating gas of con- 
duction electrons. For  many purposes 
wc may discuss the metal in terms of 
its energy levels-for exanlple, the 
energy levels associated with the normal 
modes of vibration of the lattice or the 
allowed kinetic cncrgy levels of thc con- 
duction electrons. In general, il' the 
volume does not change, thcse encrgy 
lcvels d o  not change, and an alteration 
o f  the temperaturc sinlply alters the 
di.strihuriot~ of the electrons or  lattice 
-. 
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vibrations anlong thcse Icvcls. But if 
thc volumc changcs, thcn thc levels 
thcmsclvcs also change. Thus, changing 
thc temperature at fixcd volume acts 
as a mcthod (albeit a rather gross one)  
of exploring how thcse lcvcls arc dis- 
tributed: altering the volunie is a mcans 
of changing thcnl. A combination of 
the two methods thcrcfore cnablcs us 
both to change thc levels and to invcsti- 
gate their properties aftcr the change. 

Having emphasized thc different rolcs 
of temperature and prcssure changes, 
I would now likc to show that in certain 
ways thcy arc closely relatcd. It is a 
fact of cxpericncc that the thermal 
cxpansion coetticient of  most substances 
is positive. Conscy ucntly, from the 
therniodynanlic identity cxpresscd in 
the equation: 

it follows that thc cntropy of such sub- 
stances falls when thcy arc isothermally 
compressed. But now it is well-known 
from thernlodynanlics that a t  constant 
pressure the entropy of a substance also 
falls whcn its tcnipcraturc is lowcred. 
We therefore see that in this respect 
an increase in pressurc is similar to a 
decreasc in tenlpcrature. Indcccl, so 
attractive is this idea that G. N. Lcwis 
(3) wishcd to use it as a basis for 
extending the third law of thermo- 
dynamics. His tentative statement of 
such an extension was as follows: "At 
all tempcraturcs thc entropy of a pure 

crystal is zcro at infinite pressure." The 
proposal was ncver in fact developed. 
presumably bccausc the extrapolation 
to infinite prcssure cannot usefully bc 
madc: whatcvcr the formal similarity 
betwccn increasing pressure and de- 
creasing tcniperaturc, their a c t ~ ~ a l  physi- 
cal erects  arc ~~lt inlately quitc differ- 
ent ( 4 ) .  For  more restricted purposcs. 
howcver, this similarity is quitc valid 
and very uscful, as I now hope to show. 

Thc cqui l ibr i~~nl  latticc properties of 
many mctals can be discusscd in terms 
o f  a rcduccd temperature T = TlO, 
whcrc T is thc a c t ~ ~ a l  temperature and 
O is thc charactcristic lattice tempera- 
turc of thc nictal (for cxample, the 
Dcbyc tcmperature).  0 ,  which ideally 
is independent of T, is rclated to the 
charactcristic frequency of thc latticc, 
and if  the latticc is conlpressed its char- 
acteristic f r e q ~ ~ e n c y ,  and hencc 0 ,  in- 
creases. Thus the reduccd tcniperaturc 
may bc decreased either by rcducing 
the a c t ~ ~ a l  tenlperat~lre o r  by increasing 
the pressure. This suggests that prcs- 
surc cocfficients and tcmpcraturc co- 
cficicnts must be related. Takc, as an 
exaniplc, thc lattice entropy S, which 
depends only on T l  0. Thus 

S' T d i n s  .-.-- 
Therefore 

Hcrc I havc introduced thc parameter 
y (which equals - d In 0lcl In V ) ,  
called the Griincisen paranicter. We 
thus sec that the volunle coefficient 
of cntropy is rclated to the tcmperature 
coefficient of cntropy by the parameter 
y. In fact, a thermodynaniic trans- 
formation of this equation leads to  
Griineisen's law of thermal expansion: 

whcrc C, is the specific heat at con- 
stant volume, /3 is the conlpressibility, 
and ( LI V )  [ (aVlaT) , , ]  is the thermal 
expansion coctficient. This relationship 
thcn affords a means for dcterniining y 
(which nieasurcs the change of O with 



THE IDEAL RESISTIVITY OF POTASSIUM 
I - 1 - LESISTIVITY AT FIXED VOLUME 

TEMPERATURE IN O K  

Fig. 1 (left). Thc electrical resistivity of potassiunl as a fu~lction of temperature. The solid line shows the resistivity at a fixed 
vol~imc (that at 0 ° K  under zero pressure); this is the quantity which is most convenient for direct comparison with theory. Fig. 2 
(right). The pressure coefficient of electrical resistivity of lithium, sodium, and potassium as a f~inction of temperature at constant 
density (13). 
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volume) in terms of readily observable 
quantities. 

Considerations of this kind can also 
be applied to the discussion of the 
pressure dependence of the electrical 
resistivity of metals, but first I must 
describe briefly how this resistivity de- 
pends on the temperature ( 5 ) .  It is 
convenient to distinguish between two 
sources of electrical resistivity: (i) a 
temperature-dependent part p i  (the 
ideal resistivity), due to the thermal 
vibrations of the lattice, which vanishes 
as the temperature approaches zero, 
and (ii) a temperature-independent part 
p, (the residual resistivity), which is 
due to chemical and physical imperfec- 
tions in the lattice. 

In  a perfectly periodic lattice the 
conduction electrons can move without 
hindrance; that is to say, the electrical 
resistance of the metal is then zero. If 
physical imperfections or chemical im- 
purities are introduced into the lattice, 
these will then upset the perfect peri- 
odicity and cause electrical resistance 
by scattering the electrons when they 
are accelerated by an electric field. If, 
in addition, the lattice temperature is 
raised so that thermal vibrations of the 
ions begin, these vibrations also con- 
tribute to the electrical resistance. The 
part of the resistance caused by the 
lattice vibrations may be thought of as 
approximately proportional to the mean 
square amplitude of vibration of the 
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ions. If the mass of the ions is M, 
their characteristic vibrational fre- 
quency is w ,  and their amplitude of 
vibration is n, then at a high tempera- 
ture T 

by the classical theorem of the equipar- 
tition of energy. Therefore, by Intro- 
ducing a characteristic temperature 8 
such that fi03 = k 8 ,  
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and the resistivity due to thermal vibra- 
tions, p, ,  is proportional to T / M Q 2 .  At 
the lowest temperatures p i  is no longer 
proportional to the mean square ampli- 
tude of the lattice vibrations because 
at these temperatures the lattice waves 
are less efficient in scattering electrons: 
in fact, p ,  oc? ' " /O"  in this temperature 
region. In quantum language, it is usual 
to discuss the scattering ot  electrons by 
lattice waves in terms of "phonons." 
A phonon is a quantum of lattice 
energy analogous to the photon in elec- 
tromagnetic radiation. The total num- 
ber of phonons in the lattice varies as 
T at high temperatures and as T' at 
low temperatures. The temperature de- 
pendence of the number of phonons 
largely determines the temperature de- 
pendence of the ideal resistivity. At low 
temperatures, however, the "momen- 
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tum" of the phonons falls off and the 
resistivity, as indicated above, falls off 
as T-that is, more rapidly than the 
number of phonons. Figure I illustrates 
the temperature dependence of the 
electrical resistivity of a typical 111ono- 
valent metal, potassium. 

If the effect of pressure on the ideal 
electrical resistivity arises solely from 
the change produced in 8, we should 
expect that at high temperatures 

- 2d In o cl ln P - - 

dl' 
(4 1 

and at low temperatures 

Since 0 increases with pressure, we see 
at once that as far as the lattice con- 
tribution is concerned the effect of 
pressure is to diminish the electrical 
resistivity ( 6 ) .  More~ver  we see that 
the pressure coefficient of ideal resis- 
tivity at low temperatures should be 
three times that at high temperatures. 
Figure 2 shows how the pressure co- 
efficient of resistivity of lithium, sodi- 
um, potassium, and copper varies with 
temperature. The temperature depend- 
ence is of the general form to be 
expected. Note, however, that in lithi- 
um the pressure coefficient at high 
temperatures is anomalous, being posi- 
tive. 

SCIENCE. VOL. 134 



In niore general tcrnis, thcre arc 
theoretical grounds for believing that 

whcre K measurcs the interaction bc- 
tween the conduction electrons and the 
lattice vibrations and 0 ,  is a tenipera- 
ture characteristic of the resistive prop- 
crtics of thc lattice ( I ) .  (The  results 
I have already quoted are  simply special 
cases of this, indicating that at high 
t c n i p e r a t u r e s  f(TIO,A) a p p r o a c h c s  
T 2 / 0 , ? ,  and at low temperatures, 
T"/O,,f;.) This relationship nicans that 
the product piT is a function of a 
rcduced temperature 7 cqiial to TIO,:, 
and we may expect, by analogy with 
the bchavior of the thcrl~iodynamic 
properties of the lattice, to rclatc the 
prcssurc cocfficient of clectrical resis- 
tivity at  a given temperature with thc 
temperature coefficient of electrical 
rcsistivity at that tcniperatirre. In thco- 
rctical considerations it is more logical 
to work in terms of volunic coctficicnts; 
in these tcrrns the rclntionship is as 
follows ( 6 )  : 

'1 In - d In K KB In 81 ( I  + il In ,),) ( 6 )  
. -. 

t l InV d I n V  d l n V  d In T 

The term d In K / d  In V, which depcnds 
on  the properties of the conduction 
clcctrons and o n  the static latticc, 
should be effectively indepcndcnt of 
temperature a t  normal and low teni- 
pcratiires, as is also the term d In O,,/ 
cl In V. This relationship, therefore, 
tells us that the volume coefficicnt and 
the temperature coefficient of the ideal 
resistivity are  linearly related; this in 
turn means that d l n p i l d l n  V will 
change with teniperatiire only at  teni- 
pcratiires at which d In p i / d  In T itself 
changes. This conclusion explains why 
we must make measurements at  low 
temperatures if we wish to find any 
tcniperature variation of the pressure 
dependence of electrical resistivity, 
since a glance at Fig. 1 shows that only 
at low temperatures does the tenipera- 
ture coefficient of resistance change 
significantly. 

Equation 6 means that if we measure 
the pressure ant1 temperature coeffi- 
cients over a suitable teniperaturc range 
we can determine d In B,ld In V and 
d In K l d  In V separately, in this way 
distinguishing the lattice contribution to 
the pressure coefficient from the con- 
tribution of the electron properties. 
Before comparing the experimental 
results with these theoretical predictions 
I should like to say something about 
the experimental niethods. 

Hydrostatic Pressure at produced, we niust know something of 

Low Temperatures 

T h e  application of hydrostatic pres- 
sure at  low temperatirrcs (7) presents 
a problem because all substances be- 
come solid under prcssure a t  these 
temperatures; at pressurcs above about 
30 atniosphcrcs there arc  no true fluids 
at the lowest teriiperatures. The sub- 
stance which retains its fluid properties 
at a given prcssure to the lowest tcni- 
peratirre is helium (the Heri  isotope is 
very slightly, though for our  purposes 
not significantly, bettcr than the H c b  
isotope in this respect). F o r  that reason. 
anti also because solid helium can be 
used to produce a n  effectivcly hydro- 
static prcssurc, we have used this sub- 
stance as  our  pressurc transmitting 
niediuni (8 ,  9 ) .  Other solids can of 
course be usetl for this purpose [Hatton 
(10) used solid hydrogen], and for 
some purposes the solid to be studied 
can act as its own prcssurc n>edii~m: 
that is to say, thc 111ctal is tlircctly coni- 
pressed in a cylindcr by a piston with- 
out any intcrvcning substance (see I I ) .  

In Fig. 3 is shown part of the melting 
curve of He'& (12) .  Points to  the right 
of and bclow this curve correspond to 
the fluid phase, and as long as we are 
using this phase the application of pres- 
sure is quite straightforward. T o  under- 
stand how pressures and teniperat~ires 
corresponding to the solid phase are  

the equation of state of the solid. ?'his 
information is also indicated in Fig. 3, 
in which it is shown how the pressure 
in the solid varies with temperature at  
various fixed volumes (12) .  It niay bc 
secn that a t  constant volunie the prcs- 
sure in the solid is not very dependcnt 
on the temperature; this is because in 
solid hcliunl most of the pressure arises 
from the vigorous zero-point motion of 
the hclium atoms and is thus inde- 
pendent of the temperature (inciden- 
tally, it is this strong zero-point motion 
which makes liquid helium the stablc 
phasc at O°K at nornial pressurcs). 

Our  technique of applying high pres- 
sures in thc solid state can be dcscribcd 
as a constant-voluriie nicthod. The  
prcssure is first applicd at  such a tem- 
perature that the heliiiin is still just 
fluid-that is, at a teniperatiire close to, 
but to the right of, the melting curve 
shown in Fig. 3. The  high-pressure 
bomb is then closed off so that the 
hclium is kept effectively at constant 
volume, and it is then cooled to the 
required low temperature. In  this proc- 
ess, in which the helium beconies solid, 
about one-quarter of the applied pres- 
sure is lost. However, the pressure 
existing in the bomb in the final state 
can be deduced from a knowledge of 
thc initial density (which is also of 
coursc the final density) and the final 
temperature. Our measurements have 

fluid 

temperature ( O K )  
Fig. 3.  Part of the melting curve of H e b n d  the lincs of constant volume in the solid. 
The figures give the corresponding molar volume in cubic centimeters. [After Dugdale 
and Simon (12) j  



shown that this technique of applying 
pressure by means of solid helium does 
in fact produce a very close approxima- 
tion to hydrostatic pressure (9). 

Our measurements so far have been 
confined to the monovalent metals-in 
particular to copper and the alkali 
metals, except cesium (9, 23). Alkali- 
metal specimens used in the measure- 
ments of resistance at low temperatures 
have usually been enclosed in glass 
capillaries because the metals are chem- 
ically very reactive and mechanically 
very soft. For the measurement of 
pressure effects such specimens are not 
satisfactory, and we have used extruded 
bare wires mounted loosely on insulated 
formers; a photograph of such a speci- 

men is shown in Fig. 4. The photo- 
graph shows the specimen mounted in 
position and ready to be enclosed by 
the high-pressure bomb, which is made 
of beryllium copper; the high-pressure 
seal is made by means of a steel lens 
ring. 

Expectations and Findings 

As already mentioned, we expect a 
linear relation between the logarithmic 
volume coefficient of ideal resistivity 
and the logarithmic temperature co- 
efficient of ideal resistivity. Figure 5 
shows that such a linear relationship 
does in fact exist (9, 13) for those 

metals (lithium, sodium, potassium, and 
copper) for which the necessary data 
are available. In these graphs I am 
referring to the high-temperature modi- 
fications of sodium and lithium-that 
is to say, the body-centered cubic 
phases. At low temperatures both these 
metals partially transform to a close- 
packed phase; in lithium this trans- 
formation affects the pressure coeffi- 
cient of resistivity so greatly that no 
reliable results have been obtained 
below about 75°K on this metal. 

From the curves in Fig. 5 we can 
deduce for each metal the two quanti- 
ties d ln 8,/d ln V and d ln K/d ln V. 
These values are given in Table 1. For 
comparison, the Griineisen parameter 
y [or - d ln  gD/dln V (14)], which, 
as I showed earlier, can be evaluated 
from readily available thermodynamic 
data, is also included; it is evident that 
the change of 8, with volume is quite 
similar to that of OD, as one might 
expect. Although accurate pressure 
measurements over a sufficiently wide 
temperature range have so far been 
made on only the four metals men- 
tioned, the quantity d ln K/d ln V, 
which can be derived from high-tem- 
perature measurements only, by as- 
suming that - d ln 6,/d ln V equals y 
(the Griineisen parameter), has been 
derived for all the monovalent metals. 
The results are presented in Table 2 
(columns 2, 3, and 4);  the data for 
cesium are rather uncertain. 

In order to understand why some of 
these values of d In K/d In V are posi- 
tive and why some are negative, it is 
necessary to digress and to explain 
something more of the behavior of the 
conduction electrons (5). Although it 
often gives a good approximation to 
imagine the conduction electrons mov- 
ing through the ionic lattice as though 
they were free electrons (apart from 
the scattering processes which I have 
mentioned), it is in general necessary 
to take account of the fact that their 
motion is in fact modified by the 
periodic potential inside the static 
crystal. This can often be done by 
assigning an "effective" mass to the 
electron which differs from its true mass 
but takes account of interaction with 
the lattice potential. Another important 
feature of the electron motion arises 
from the fact that electrons obey the 
Pauli exclusion principle. At the abso- 
lute zero of temperature the electrons 
take up a configuration of minimum 

. energy which, classically, would be one -- 
Fig. 4. A photograph of a typical alkali metal specimen wound on an insulated former. of zero kinetic energy-that is, with 
At right is the beryllium-copper bomb which encloses the specimen. all the electrons at rest. Because of the 
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Table 1. Da ta  o n  resistivity for l i t l ~ i u n ~ ,  s o d i ~ ~ m ,  
potassium, and  copper. 

ln en Gruneisen d 1, K 
Metal - ---- parameter - -  

d l n  I/ Y d l n  V 

exclusion principle, however, this is not 
possible, since each state of kinetic 
energy can be occupied by only two 
electrons (of opposite spin). Conse- 
quently the electrons "fill up" all the 
lowest kinetic-energy levels available to 
them until all the electrons are accom- 
modated. Therefore, at the absolute 
zero of temperature all the lower 
kinetic-energy levels are filled up to a 
certain value E,, and above this the 
levels are ail empty. The value of E ,  
in a typical monovalent metal, if ex- 
pressed as an equivalent temperature, 
is around 50,000°K-in other words, 
this is the temperature to which, a clas- 
sical electron gas would have to be 
heated to have a similar kinetic energy. 
It is evident from this that even at 
room temperature the additional kinetic 
energy of the electrons that is due to 
thermal motion is tiny as compared to 
their zero-point energy, so that for some 
purposes we can treat the electrons as 
being effectively at 0°K. The maxi- 
rnum energy E,, of the electrons at O°K 
(or more generally, their chemical po- 
tential) is referred to as the Fernii 
energy of the electrons, E , ,  and this 
quantity varies with volume; in the 
siniplest approximation of quasi-free 
electrons, E,  or I/'-"'". 

How are the electron velocities dis- 
tributed over the various directions in 
space? In an ideal gas the distribution 
would be isotropic-that is, the average 
velocity would be the same in all direc- 
tions. In discussing electrons in metals 
it is more convenient to work, not 
directly with the electron velocity or 
monientum, but (since the properties 
of electrons are governed by wave 
mechanics) with the electron's wave 
number k ,  which in the case of com- 
pletely free electrons would be related 
to the momentum by the De Broglie 
relationship hk = p .  The energy of 
such electrons (of mass nz) is given by 
E = h q k ' / 2 i n ,  so if we plot the com- 
ponents of k, k,, k,, and k, along car- 
tesian axes (k-space), the surfaces of 
constant energy would therefore be 
spheres (corresponding to an isotropic 
distribution of velocities j . The surface 
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corresponding to the Fermi energy of 
the electrons is called the Fermi sur- 
face. If the electrons are not free but 
are influenced by the potential field of 
the lattice, then the Fermi surface will 
no longer be a sphere but will be more 
or less distorted, depending on the 
influence of the lattice potential; the 
symmetry of the Fermi surface taken 
as a whole is closely related to that of 
the crystal. The importance of the 
Fermi surface arises from the fact that 
only electrons close to the Fermi sur- 
face have unoccupied electronic levels 
in their neighborhood-in other words, 
these are the only electrons which can 
be thermally excited (at normal tem- 
peratures) or scattered by lattice waves 
or impurities. 

The wavelike properties of electrons 
iniply that, like x-rays, electrons in a 
crystal may suffer Bragg reflections. 
Thus, if an electron propagating in a 
certain d~rection in the crystal has just 
the right wavelength to satisfy the 
Bragg condition, ~t will be reflected by 
the appropriate lattice planes. Suppose 
that we choose some particular direc- 
tion in the crystal and then find the 
minirnurn value of k which an electron 
propagating in that direction must have 
to satisfy the Bragg relation; suppose, 
further, that we do this for all possible 
directions. Then if we draw these 
k-vectors from the origin in k-space, 
it turns out that their ends lie on a 
polyhedron about the origin, this poly- 
hedron having the symmetry of the 
lattice. This polyhedron is referred to 
as the first Brillouin zone of that lattice, 
and it is relevant to any kind of wave 
that can propagate through the lattice 
(in particular lattice waves and elec- 
trons). If for the electrons we draw 
surfaces of constant energy in k-space, 
all those surfaces lying within the 
Brillouin zone are continuous, whereas 
those surfaces which intersect the zone 
boundary will, in general, suffer a dis- 

Fig. 5. The logarithmic volume coefficient 
of the ideal resistivity of lithium, sodium, 
potassium, and copper, shown as a func- 
t~on  of the logarithmic temperature co- 
efficient. 

continuity; there is in fact a forbidden 
energy region at the zone boundaries 
such that electrons with energies lying 
within this range cannot propagate in 
the lattice. 

The volume of the zone in k-space 
is such that if the crystal has N atoms 
per unit volume ( 1 5 ) ,  then the zone 
can accommodate N electrons of a 
given spin, uniformly distributed 
throughout the zone. Since electrons 
can exist in two independent spin states 
of the same wave vector, the zone can 
contain just 2N electron states. 

This latter conclusion has the follow- 
ing important consequence. In a mono- 
valent metal, which has just one con- 
duction electron per atom, the Fermi 
surface which encloses all the electron 
states in k-space must therefore coni- 
prise a volume equal to half that of the 
Brillouin zone. This in turn means that 
if in cubic monovalent metals the Fernii 
surface is nearly spherical it can be 
entirely contained within the first zone 
without anywhere touching it. This 

Table 2. Da ta  o n  resistivity for the monovalent metals. 

d l n p ,  d l n  K MO,,'V:p t 

Metal 2-1 ( )  / 0 8,. B i / O n  -- 
at 0°C T 

* The value for cesium was taken from MacDonald ( 1 ) .  The other values of H A  were taken from 
( 13 )  and (9 )  for the alkali metals and from ( 2 7 )  for the noble metals. +Two-phase mixture. 
4 Estimated value for the body-centered cubic phase. 
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Fig. 6. A model of the first Brillouin zone 
of a body-centered cubic lattice. The 
sphere occupies half the volume of the 
zone. 

situation is illustrated in Fig. 6, which 
shows a model of the first Brillouin 
zone of a body-centered cubic lattice 
containing a sphere whose volume is 
just half that of the wne. Figure 7 
shows a two-dimensional square lattice, 
its two-dimensional Brillouin zone and 
the Fermi "circle" having an area of 
just half that of the zone. In Fig. 7 
(a, b, c, and d )  I have shown, purely 
schematically, the progressive distortion 
of the Fermi surface; in d this surface 
is in marked contact with the Brillouin 
zone. In general, distortion of the 
Fermi surface causes those regions 
which are nearest the zone boundaries 
to become even closer. 

A great deal is now known about the 
Fermi surfaces of the noble metals from 

a variety of techniques which give 
direct information about the shape and 
other features of the Fermi surface 
(16). These methods agree in showing 
that the Fermi surfaces in copper, sil- 
ver, and gold all touch the zone bound- 
ary. About the alkali metals we have 
as yet no direct evidence, but indirect 
evidence suggests that the Ferrni sur- 
faces of sodium and potassium are 
nearly spherical, that the Fermi surface 
of rubidium is somewhat distorted, and 
that the Fermi surfaces of lithium and 
cesium are much more distorted, per- 
haps touching the Brillouin zone 
boundary (17, 18). The effects of such 
distortion on electrical resistivity are 
discussed later. 

When an electric field is applied to 
a metal the conduction electrons are 
accelerated and the whole Fermi sur- 
face begins to move in the direction 
of the field (see Fig. 8). The electrons, 
however, are prevented from continu- 
ous acceleration in the field by collisions 
with phonons (we are considering only 
the ideal resistivity), and the Fermi- 
surface movement is almost vanishingly 
small. The effect of the distortion of 
the Fermi surface on the scattering of 
electrons by phonons is a difficult 
theoretical problem, and detailed studies 
have only recently been made (19). 
One of the most important effects arises 
from a type of scattering process called 
an "Umklapp" process, which gives rise 
to large angle scattering of the elec- 
trons. 

First consider a typical normal scat- 
tering process in which an electron of 

DIRECT LATTICE FIRST BRlLLOUlN ZONE 

Fig. 7. A two-dimensional square lattice and the corresponding first Brillouin zone. 
( a )  The Fermi "circle" corresponding to one electron per atom; ( b ) ,  (c), and (d), 
progressive distortions of the Fermi surface (schematic). 
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wave vector k is scattered by a phonon 
of wave vector q into a new state of 
wave vector k'; k, W ,  and q are related 
by the vector condition that k - k' = q. 
Moreover, the phonon energy at all 
normal and low temperatures is very 
small compared with the Fermi energy 
of the electrons. Since only those elec- 
trons near the Fermi level have neigh- 
boring unoccupied states into which 
they may be scattered, the scattered 
electron must both start and end effec- 
tively at the Fermi surface. Figure 9 
shows the geometry of a normal scatter- 
ing process. As mentioned earlier, the 
Brillouin zone governs the behavior of 
all kinds of waves that can propagate 
through the metal, including lattice 
waves; the biggest wave vector that a 
phonon can have is one which reaches 
from the center of the zone to the 
zone boundary. This therefore limits 
the angle through which an electron 
may be scattered in a normal process, 
even at the highest temperatures. At 
low temperatures, where only low- 
energy phonons (having therefore small 
wave vectors) are excited, the angle of 
scattering is even further limited in such 
processes. 

An UmkIapp process may be inter- 
preted as one in which the electron is 
scattered by a phonon and also under- 
goes a Bragg reflection. In vector terms, 
the well-known Bragg condition is rep- 
resented by the equation k' - k = R, 
where R is a reciprocal lattice vector. 
In Fig. 7 the vectors R' and R" are two 
reciprocal lattice vectors for the simple 
square lattice. Thus, in an Umklapp 
process the vector condition 

k ' - k = q  (7) 

is replaced by 

where R is a reciprocal lattice vector. 
Such a process is illustrated in Fig. 10. 
Its importance lies in the fact that, 
because the large vector R enters into 
the process, it makes possible scattering 
at wider angles than can occur in a 
normal process. This can also be seen 
by a geometrical construction. Equa- 
tion 8 may be rewritten as 

and we begin by representing graphi- 
cally all the possible vectors k + R. 
Since the k vectors of all electrons 
which can be scattered must lie on the 
Fermi surface, the vectors k + R', for 
example, must lie on the same surface 
displaced by the vector R'; the same is 
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I E  Fig. 8 (left). Displacement of the Fermi surface under the influence of an electrical field. 
Fig. 9 (middle). A "normal" scattering process. Fig. 10 (right). An Umklapp process. 

true for the other reciprocal lattice 
vectors. Thus, the possible k + R vec- 
tors lie on a set of surfaces consisting 
of the original Fermi surface suitably 
displaced, as in Fig. 11. In order to 
satisfy the requirement of conservation 
of energy, all the vectors k' of the elec- 
trons after scattering must lie on the 
original Fermi surface; so, to satisfy 
Eq. 8, we must look for vectors - q 
which go from one of the repeated 
Fermi surfaces back to the original 
Fermi surface. Such phonon vectors, 
illustrated in Fig. 11, give rise to 
Umklapp processes. 

If the Fermi surface does not touch 
the zone boundary, then q must exceed 
a certain minimum value or else Um- 
klapp processes are impossible. This 
minimum value is equal to the distance 
of closest approach of two adjacent 
Fermi surfaces-for example, the vec- 
tor CD in Fig. 1 I .  An Umklapp proc- 
ess with this minimum vector scatters 
the electron through the maximum 
angle of 180" (Fig. 12). q vectors 
which are larger than the minimum 
usually produce rather smaller scatter- 
ing angles; nevertheless all Umklapp 
processes in a monovalent metal cause 
comparatively large angle scattering. 

The existence of a minimum value of 
q for Umklapp processes means that at 
low temperatures the number of such 
processes must begin to fall off because 
the number of phonons with a large 
enough wave vector begins to fall off. 
Thus, the shape of the Fermi surface 
can influence the temperature depend- 
ence of electrical resistivity at low teni- 
peratures. It also affects the magnitude 
ot the resistivity, since at all tempera- 
tures the more closely the Fermi surface 
approaches the zone boundary the 

greater is the number of phonons that 
can take part in Umklapp processes. 
Since, as has been emphasized, these 
are wide-angle scattering processes, this 
implies that the nearer the Fermi sur- 
face is to the zone boundary the higher 
is the electrical resistivity, other things 
being equal. (J3y "other things" I mean 
in particular the number of phonons 
available for scattering the electrons; 

this point is discussed in more detail 
in the next paragraph.) Distortion of 
the Fermi surface changes not only the 
number of possible Umklapp processes 
but also, for example, the velocity of 
the electrons at the Fermi level, and 
this too can alter the resistivity. In 
general, however, it seems that, if the 
resistivities of the monovalent metals 
are compared under conditions such as 

Fig. 11. Repeated zone scheme to illustrate the possible wave vectors which can give 
rise to Umklapp processes. 

14 JULY 1961 83 



Fig. 12. Electron scattering through 180" 
number which can cause an Umklapp process. 

to eliminate the effects of their different 
lattice properties, the more distorted the 
Fernli surface the higher the resistivity. 
With these ideas in mind let us now 
look at the magnitude of the resistivities 
of the monovalent metals. 

In comparing the resistivity of differ- 
ent metals it is important to compare 
not the resistance p of a cube of side 
1 centimeter but rather that of a cube 
containing, for example, 1 gram atom 
of material-that is, the atomic resis- 
tivity p/Vl/"here V is the gram- 
atomic volun~e. Moreover, in order to 
bring out the dependence of the resis- 
tivity on the properties of the electrons 
(for example, the shape of the Fermi 
surface), the resistivities must be com- 
pared at temperatures at which the 
lattices are in similar states-that is, 
at temperatures at which the amplitude 
of the lattice vibrations is some certain 
fraction of the interatomic distance. 
This means that, in the high-tempera- 
ture "classical" region, one should com- 
pare not the atomic resistivities but 
rather the "reduced" atomic resistivities 

(M02 V1/3/ 7'). (The derivation of this 
result is rather similar to that of the 
Lindemann melting formula; here M is 
the mass of the ions and 0, the char- 
acteristic lattice temperature.) The 
actual temperature T is immaterial since 
at high temperatures tends to reach 
a constant value and it is this limiting 
value, at constant density, which we 
take. A comparison of the reduced 
resistivities is made in Table 2 (column 
lo ) ,  in which 0, is taken from specific 
heat measurements (20). These Debye 
8, values, which can be taken as a 
measure of the temperature dependence 

by a phonon having the minimum wave 

of the phonons, are now quite well 
established, although in sodium and 
lithium the low-temperature crystallo- 
graphic transformations introduce some 
uncertainty. I should also point out 
that, since the noble metals have a 
face-centered cubic structure while the 
alkali metals have a body-centered 
cubic structure (except for sodium and 
lithium at low temperatures), the com- 
parison between the two sets of metals 
cannot be taken too literally, although 
the general features should be correct. 

It may be seen that of all the mono- 
valent metals, potassium and sodium 
are outstandingly good conductors, 
rubidium and cesium are successively 
poorer, and lithium and the noble 
metals are worse still. Among the noble 
metals, silver has the lowest reduced 
resistivity. This classification corre- 
sponds broadly with what is at present 
known about the Fermi surfaces of the 
monovalent metals. 

Having considered the magnitudes let 
us now consider the temperature de- 
pendence of the resistivity. This is 
largely governed by the temperature 
dependence of the number of phonons 
in the lattice-that is, by the Debye 8,. 
But as we saw in discussing Umklapp 
processes, the low-temperature resis- 
tivity does not depend only on the 
behavior of the phonons; it also de- 
pends on the Fermi surface. If the 
metal has a distorted Fermi surface, 
the electrical resistivity tends to remain 
higher (because of the increased nurn- 
ber of Umklapp processes) at low tem- 
peratures than that of a metal with a 
spherical Fermi surface at the same 
reduced temperature (that is, with the 

same number of phonons excited). 
Roughly speaking, OR (which is a meas- 
ure of the temperature dependence of 
p i )  is proportional to the lowest tem- 
perature at which pi behaves classically 
-that is, the temperature at which p ,  
departs from linearity with T. This 
temperature should therefore be lower 
for metals in which Umklapp processes 
can persist to lower temperatures. Thus, 
we should expect O,/O, to vary with 
the degree of distortion of the Fermi 
surface; for a metal with a distorted 
Fermi surface the ratio should be lower 
than for a metal with an undistorted 
Fermi surface. The values of this ratio 
are given in Table 2 (column 9 ) ,  and 
they show roughly the sort of variation 
we should expect: sodium and potas- 
sium have exceptionally large values for 
the ratio, the other metals have lower 
values. Interestingly enough, these 
lower values are all close to unity; why 
the values of 0, and OR should be about 
equal for these metals is not, I think, 
altogether understood. 

These comparisons suggest that the 
pressure coefficients might likewise be 
understood, at least qualitatively, in 
terms of distortion of the Fermi surface. 
Table 2 (column 4)  shows that the 
values of d In K l d  In V, which measure 
the change of interaction constant with 
volume, do fit into the pattern. For 
example, all the noble metals have neg- 
ative values and so does lithium. These 
are the monovalent metals with the 
most distorted Fermi surfaces. Sodium 
and potassium, the two metals with 
nearly spherical Fermi surfaces, have 
values of d In K l d  In V which are de- 
cidedly positive; rubidium has an inter- 
mediate value. For cesium the data 
needed here are not reliable, but as we 
shall see below, cesium too fits into the 
general picture. 

Although there is a clear correlation 
between the pressure coefficients of 
resistivity and distortion of the Fermi 
surface, we still have to understand why 
in a metal with a spherical Fermi sur- 
face d In K l d  In V is positive whereas 
in a metal whose Fermi surface touches 
the zone boundary it is negative. This 
is a theoretical problem which has not 
yet been fully solved. Nevertheless, let 
us consider first the example of a 
spherical Fermi surface which, for sim- 
plicity, we shall assume does not distort 
under pressure (21). A positive value 
for d In K l d  In V means that a decrease 
in volun~e causes the electrons to inter- 
act less with the lattice waves. Decreas- 
ing the volume increases the Fermi 
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energy of the electrons, and we may 
interpret this result as meaning that as 
the electron energy is increased the 
electrons are less scattered by the lattice 
waves. This conforms with the classical 
idea that a body with greater kinetic 
energy is scattered less by a given 
obstacle than one with lower energy. 

We have here assumed that on coni- 
pression of the lattice the Fermi-surface 
distortion remains unchanged. While 
this may be true of sodium for small 
volume changes, theoretical calculations 
show that this is not generally true 
( 1 8 ) .  In general, in all the monovalent 
metals, increasing the pressure on the 
metal increases the distortion of the 
Ferrni surface; if the surface is already 
touching the zone boundary, pressure 
will increase the area of contact. Such 
an increase in the distortion of the 
Fermi surface under pressure, with the 
consequent enhancenient of Urnklapp 
processes, tends to increase the resis- 
tivity. This was originally proposed as 
an explanation of the anomalous posi- 
tive pressure coefficient of resistance in 
lithium ( 1 7 ) ,  and it seems probable 
that the same basic mechanism occurs 
in all the monovalent nietals. 

There are thus two opposing tend- 
encies when a metal is compressed- 
on the one hand an increasing distortion 
of the Fernii surface, which increases 
the interaction constant K ,  and on the 
other hand an increase in the Fernii 
energy, which, as suggested above, tends 
to decrease K. The trend of the values 
for d In K/d in V leads us to suppose 
that the more distorted the Fermi sur- 
face is, the more prominent the first 
effect becomes. This is perhaps plau- 
sible, but without a careful theoretical 
analysis it is not possible to say more. 
Unfortunately such an analysis has not 
yet been made. Nonetheless, quite em- 
pirically, it does seem that in the mono- 
valent metals, negative values of 
d In Kld ln V are associated with a 
Fermi surface already in contact with 
the zone boundary, and the large posi- 
tive values, with a nearly spherical 
Fermi surface. We might therefore 
guess that if this parameter is about 
zero this indicates that the Fermi sur- 
face is just about to touch the zone 
boundary. 

Bridgman (22) has measured the 
pressure dependence of the electrical 
resistance of the alkali metals at room 

temperature up to very high pressures. 
It is interesting to consider these curves 
in terms of the distortion of the Fermi 
surface which we have just been dis- 
cussing. Bridgnian's results are shown 
in Fig. 13, in which relative resistance 
is shown as a function of the relative 
volume. As I have already emphasized, 
an important part of the change in ideal 
resistivity with volume arises fro111 the 
change produced in 0.  i t  is possible, 
from a knowledge of the compressibility 
of the lattice as a function of volume, 
to estimate how B changes with volume. 
Using this information and that in Fig. 
13, I have estimated how the inter- 
action constant K changes with volume 
over the full range of pressures; these 
results are shown in Fig. 14. Lithium 
is reillarkable in that, for it, K always 
increases under compression; this has 
already been discussed. The curve for 
cesium shows a pronounced minimum 
when its volun~e has been reduced by 
about 5 percent. We can now interpret 
this to mean that at this volume (ap- 
proxinlately) , contact of the Fermi 
surface with the Brillouin zone bound- 
ary occurs. The behavior of rubidium 
is rather similar, although for it the 

VOLUME DEPENDENCE OF RESISTANCE OF THE ALKALI METALS 
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ininin~uin is reached at  a rather higher 
pressure. Sodiuni and potassium behave 
rather diflerently from the others: for 
these two metals K increases rather 
slowly after the minimum has been 
reached. Nevertheless it seems that in 
all these metals we are  seeing the effect 
on K of progressive distortion of the 
Fermi surface. 

Pressure Coefficients and 

Thermoelectric Power 

At  high temperatures (temperatures 
which are large as coinpared to the 
characteristic temperature of the lat- 
tice) the absolute thernloelectric power 
of a metal S is related to its resistivity 
by the following relationship (23)  : 

( k  is Boltzmann's constant and e is the 
electronic charge). This relationship 
(24)  expresses the fact that the thermo- 
electric power of a metal depends on 
how the resistivity of the metal varies 
with its Fermi energy. and froin the 
measured values of the thermoelectric 
power of a metal a t  high temperature 
it is thus possible to  obtain a measure 
of this variation through the quantity 

One way of altering the Fermi energy 
of a metal is to compress it. Thus there 
should be some relationship between 
the volume coefficient of resistivity and 
the value of x for  that metal. It  is not 
to be expected that x will be related to 
the total change of resistance due to 
the volume change because this involves 
the change in the amplitude of the 
lattice vibrations. which has n o  counter- 
part in x. Tf, however, we eliminate 
the part due to  changes in the lattice 
vibrations and consider d In K l d  In V, 
we might expect that this would be  
related to x. In  Table 2 a comparison 
of these quantities is made for the 
 non nova lent metals, and the ratios are  
listed (colunln 6).  If the change in K 
with volume were due entirely to  the 

change in the Fermi energy E,, with 
volume and if the Fermi surface did 
not distort under pressure, this ratio 
would be simply d ln E , ld ln  V. F o r  
a spherical Fermi surface this has the 
value - 2/3, since E ,  is proportional 
to V-212.  I t  inay be seen that for  all 

the metals the value lies between - 0.3 
and - 0.8; in particular for sodium 
and potassium, the two metals whose 
Permi surfaces are most nearly spheri- 
cal, the value of the ratio is quite close 
to  - 2/3. 

If the interpretation given above of 
the niinirnum in the resistance-versus- 
pressure curve of cesium is correct, and 
if the thermoelectric power is intimately 
related to the quantity d ln K l d  ln V, 
the thermoelectric power of cesium 
should be very sensitive to  pressure 
and should in fact change sign at  quite 
modest pressures (pressures similar to 
that required to  reduce the resistance 
to its minimum value). Recent meas- 
urements on the thermoelectric power 
of cesium at O°C ( 2 5 )  show that this 
change of sign does indeed occur and 
that the thernloelectric power of cesium 
is extremely sensitive to pressure; it 
changes by nearly 1/2 percent per 
atmosphere. 

T o  sum up, we may say that the pres- 
sure coefficient of the ideal resistivity 
of a metal changes appreciably only at 
low temperatures (T  < 8/3) ; more- 
over, experiments show that this change 
is related to  the change in the tempera- 
ture coefficient of resistivity in the way 
that theory predicts. There appears to 
be a close connection between the elec- 
tronic contribution to the pressure co- 
efficient of resistance on the one hand 
and the thermoelectric power of the 
metal on the other. When one comes 
to consider the magnitude of the pres- 
sure coefficient it is clear that in some 
metals, notably lithiurn, cesiurn, and the 
noble metals, this can only be under- 
stood in terms of the distortion of the 
Ferrni surface of the metal. This dis- 
tortion is also reflected in the tempera- 
ture dependence and the magnitude of 
the resistivity. A11 this emphasizes how 
desirable it would be to  obtain direct 
information about the shape of the 
Fermi surfaces in alkali metals (26).  
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