SCIENCE

31 October 1958

Volume 128, Number 3331

Editorial	Imaginary Tour	1057
Articles	Modifying Weather on a Large Scale: <i>H. Wexler</i> Current proposals are either impractical or likely to produce cures that are worse than the ailment.	1059
	The Test of Simplicity: N. Goodman Simplicity is a test of the effectiveness of scientific theories; but what is the test of simplicity?	1064
	Richard Goldschmidt, Biologist: C. Stern	1069
News of Science	War Prevention and International Cooperation: Statement of Third Pugwash Conference; other events	1071
Book Reviews	H. R. Hays' From Ape to Angel, reviewed by W. L. Warner; other reviews	1077
Reports	Cultures of Gonads of Mammalian Embryos: E. A. Holyoke and B. A. Beber	1082
	Ultraviolet Mitigation of X-ray Lethality in Dividing Yeast Cells: M. M. Elkind and H. Sutton	1082
	Quantitative Relations between Stages of Leaf Development and Differentiation of Sieve Tubes: W. P. Jacobs and I. B. Morrow	1034
	Changes in Tryptophan Peroxidase Activity in Developing Liver: A. M. Nemeth and V. T. Nachmias	1085
	Psychological Brightness Reduction of Simulated Flashes from a Polyhedral Satellite: R. H. Wilson, Jr.	1086
	Physicochemical Study in Water of a Mucoprotein with Virus-Inhibiting Activity: M. Maxfield	1087
	Artificially Induced Circulation of Lakes by means of Compressed Air: W. R. Schmitz and A. D. Hasler	1088
	Thermocouple for Vapor Pressure Measurement in Biological and Soil Systems at High Humidity: L. A. Richards and G. Ogata	1089
	Effects of Selenium and Vitamin E on White Muscle Disease: O. H. Muth et al	1090
	Anaphylaxis in Passively Sensitized Guinea Pigs after Subcutaneous Eliciting Injection: S. H. Stone	1090
Departments	Fifteenth International Congress of Zoology; Forthcoming Events; Equipment	1092

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

NOW... Completely Automatic Scintillation Counting!

Here is an instrument that quickly pays for itself by saving staff time. It can be operated twenty-four hours per day and seven days per week without attendance. Also, more samples can be counted and better data obtained by using longer counting periods and more repeat counts.

Test tubes are 16 mm diameter by 150 mm long for standard well-type scintillation detectors. Any number up to ONE HUNDRED SAMPLES can be counted at each loading. After the last sample in the turntable has been transferred to the scintillation detector, counted, and returned to its place in the turntable, the unit resets to the first sample and starts over again. Counting periods are based on both preset time and preset count, and counting is stopped by whichever is reached first. Sample number, time interval and scaler reading are all recorded on the paper tape.

The Auto-Gamma Sample Changer is available for many different systems. It can be purchased as a complete unit with a choice of large or small sodium iodide crystals. It can also be used with scintillation spectrometers or with simple scaler systems.

For full information request Auto-Gamma Bulletin.

New amplifier battles "noise"

Four-stage junction diode amplifier was developed at Bell Telephone Laboratories by Rudolf Engelbrecht for military applications. Operates on the "varactor" principle, utilizing the variable capacitance of diodes. With 400-mc. signal, the gain is 10 db. over the 100-mc. band.

The tremendous possibilities of semiconductor science are again illustrated by a recent development from Bell Telephone Laboratories. The development began with research which Bell Laboratories scientists were conducting for the U. S. Army Signal Corps. The objective was to reduce the "noise" in UHF and microwave receivers and thus increase their ability to pick up weak signals.

The scientists attacked the problem by conducting a thorough study of the capabilities of semiconductor junction diodes. These studies led to the conclusion that junction diodes could be made to amplify efficiently at UHF and microwave frequencies. This was something that had never been done before. The theory indicated that such an amplifier would be exceptionally free of noise.

At Bell Laboratories, development engineers proved the point by developing a new kind of amplifier in which the active elements are junction diodes. As predicted, it is extremely low in noise and efficiently amplifies over a wide band of frequencies.

The new amplifier is now being developed for U. S. Army Ordnance radar equipment. But it has numerous other possibilities. In radio astronomy, for example, it could be used to detect weaker signals from outer space. In telephony, it offers a way to increase the distance between relay stations in line-of-sight or over-the-horizon communications.

BELL TELEPHONE LABORATORIES

WORLD CENTER OF COMMUNICATIONS RESEARCH AND DEVELOPMENT

