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The ““Clock Paradox’ and

In the pages of Nature there have ap-
peared recently exchanges of correspon-
dence between McCrea (1), Dingle (2),
and Crawford (3). Dingle maintains
that there will be no difference in age
between a returned space traveler and
his twin brother who stays home, while
the other authors maintain that such a
difference will exist, in just the amount
computed by a straightforward applica-
tion of the Lorentz transformation of
special relativity. Dingle’s argument is
based on an old difficulty known as the
“clock paradox,” which stems from an
apparent ambiguity in the answer to the
question: If all motion is relative, how
does one decide who traveled and who
stayed home?

McCrea and Crawford have in my
opinion clearly won the argument, and
perhaps further remarks are superfluous.
However, because of the considerable in-
terest aroused, it may be worth while to
restate the situation in new words and
all in one place; hence this article. It
has three sections. In the first, the “para-
dox” is stated and resolved, using only
inertial coordinate systems; in the sec-
ond, a treatment of accelerated coordi-
nate systems based on the principles of
special relativity is given; in the third,
the possibility of practical implications
for space travel is examined.

The “Paradox” and Its Resolution

The apparent difficulty in the “para-
dox” can be stated very simply. The twin
brothers B and B’ are in relative motion
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with the velocity v. 1f B considers him-
self at rest, he concludes from the usual
formula for the time dilatation that the
watch carried by B’ will register a time
interval

V1= (2%/¢*) At
while his own watch registers a time in-
terval At. If B’ makes a journey at veloc-
ity v and returns home at the same veloc-
ity, his elapsed time (as measured by his

watch or by his own physiological aging)
will be smaller by the factor
V1= {(v%/c?)

than the elapsed time experienced by B,
who stayed home. However, if “all mo-
tion is relative,” B can just as well say
that he went on the trip while B’ stayed
at rest, and he can state that he is the
one that should be younger. If both state-
ments were correctly derived from the
principles of special relativity, there
would indeed be a paradox and one
would conclude that the theory is not
self-consistent and must be rejected.
What we shall show is that the first
statement is correct while the second is
wrong; there is no true paradox, and the
result that travelers live longer than
stay-at-homes, while sometimes called
“paradoxical,” is really in the “strange
but true” category.

To examine this matter more closely,
we must set up the situation in greater
detail. Suppose that B is at rest at the
origin of an intertial coordinate system S,
while B’ has the same relation to an in-
ertial coordinate system §’, and that the
two coordinate systems are in relative
motion with a velocity v. Suppose also
that the watches of the two brothers are
set so that they each read zero when the
two origins coincide, which defines the
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starting point of the trip. The coordi-
nates and times in the two systems are
then related by the Lorentz transforma-
tion

X =y(x— vt) (1)

v=v(1-%x) (2)

y=1/V1- (/"

From these equations, and from the
fact that the brothers are located at their
respective origins, we find for the rela-
tion between times observed at the loca-
tion of B (where x=0)

t' =yt (3)

while at the location of B’ (where

x¥’=0), we find
¢t =yt (4)

The quantities in these equations are
clock readings ¢ at coordinates x in S,
and ¢ and " similarly defined in §’,
while the equations give the relations be-
tween these quantities at localized events
which are perceived in both systems. We
may picture each system as carrying a
long line of measuring rods and clocks,
with observers to note down the clock
reading and distance coordinate when-
ever an event occurs. These of course do
not actually exist, but we are allowed to
use them in discussion since the Lorentz
transformation is constructed in such a
way that all relations between events
(such as the sending and reception of
light signals) perceived where there are
actual observers are consistent with ob-
servations that might be made elsewhere.

Now imagine a very simple event in
which B’ merely looks at his watch, notes
that it has the reading v, and also ob-
serves the reading of the particular clock
in § that coincided with his location at
that instant, obtaining for that the value
v, as given by Eq. 4. This event alone
is not sufficient to determine the relative
elapsed time as seen by B and B’; it must
be correlated with -another event, which
is a watch reading made “simultane-
ously” by B.

Here we run into trouble in the inter-
pretation of the word simultaneous. First
consider the situation from the stand-
point of B. One of his corps of observers
reports (at any time after the event) that
he saw B’ read his watch when he went
by, and reports his readings of ¢ and ¢/,
which are the same as those noted by B’
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at the same time and place. B can then
say: “When B’ looked at his watch, he
saw the reading v; my own observer read
the time as yt on his local clock; that
clock is synchronized with my own
watch; therefore, if I had looked at my
watch when it indicated the time vy,
that event would have been simultaneous
with the event consisting of B’ looking
at his watch.” Second, consider the situ-
ation from the standpoint of B’. He says
to his observers: “One of you was next
to B when your clock read T, which is
the time when I read my watch. What
did you see on the watch of B?” The
result, from Eq. 3, would be t/y. There-
fore, if B had looked at his watch when
it read t/v, B’ would have considered
that event to be simultaneous with his
own watch-looking event.

Thus, to one event at B/, there corre-
spond two different ‘“‘simultaneous”
events at B, depending on whose idea of
simultaneity is accepted. This result is
well known, and is not considered trou-
blesome so long as B and B’ are in rela-
tive motion at a distance apart; because
of the symmetry of the situation, there
is no way to decide who is “right,” and
there is no meaning in such a decision.

The usual next step is to have one of
the observers reverse his motion, so that
ages can be compared directly when the
two come together again. However, the
argument is just as cogent if we have
them come to a state of relative rest,
where age comparisons are meaningful
cven at a distance, and this approach is
used because of its simplicity. The end
of the trip will be defined by having one
of the observers (say B’) come to rest
relative to the other.

Now an element of dissymmetry is in-
troduced, since B’ is the one who has to
push the firing button of his decelerating
rocket and whose accelerometer will de-
flect, while nothing will happen to B.
This fact is used in a way which does
not involve any arguments from general
relativity (except insofar as it may give
meaning to the concept of an inertial
system) or any discussion of accelerated
coordinate systems. The important thing
is that, once B’ has stopped, he has dis-
sociated himself from §” and attached
himself to § (with a shift in the zero
point of his time scale, of course); the
system $” remains unchanged. (We may
note here that a reversal, rather than a
stopping, of B’ can be treated by having
him transfer to a third inertial system
$” moving in the opposite direction; this
more complicated procedure leads to a
result for the round trip consistent with
what we get for the outward part.) It is
also postulated, as is usually done and as
seems physically reasonable, that acceler-
ation as such does not change his clock
reading. His readings of v on his own
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watch and yt on the clock in § at which
he stopped are, one may say, transferred
bodily into S, and he and B can then
compare notes with no ambiguity since
they are at relative rest and since both
use the same definition of simultaneity.
Both B and B’ agree that the ratio of
elapsed times during the trip is that given
by Eq. 4, and there is no “paradox.”

Looking at the situation from another
standpoint, one might inquire about the
interpretation of a signal sent out by B’
at such a time that its arrival at B is
simultaneous (in $”) with the stopping
of B’. Such a signal, seen by B and in-
terpreted as indicating “the end of the
trip,” would lead to a wrong result (to
the usual “paradox” in fact). However,
if B is more careful, he will realize the
discrepancy in concepts of simultaneity
and correct for it. From Eq. 2 we find
that the difference in ¢ between two
events occurring at the same value of #
and at locations a distance Ax apart (in
§) is equal to vAx/c2 The distance Ax
in the case being considered is vyt, the
length of the journey in S; the events
are the arrival of the signal at B and the
stopping of B’. The time correction
vAx/c? has the value (v2/c%) w¥7, or
[v—=(1/v)]v. When this is added to t/¥,
the observed value of ¢ at the arrival of
the signal, the value ¢= vyt for the time
of stopping of B’ is obtained, in agree-
ment with what was seen directly by ob-
servers in S. What will B’ think of this?
He sent the signal with the expectation
that it would reach B when he reached
the end of his journey, but when he gets
into communication with the observers
in § after the trip is over, they tell him
that the signal arrived before he stopped.
He resolves this apparent dilemma by
realizing that when he jumped from S’
into § he had to replace the concept of
simultaneity in $’ by that of simultaneity
in S, the difference introduced thereby
being equal to the “time correction™ al-
ready defined.

At the cost of some repetition, we re-
turn to the question: How does one dis-
tinguish the stopping of B’ from the
starting of B, when the change in rela-
tive velocity is the same in both cases?
Physically, the acceleration is felt by B’
and not by B; mathematically, the ac-
celeration is treated as a transfer from
one inertial system to another, and here
again the distinction is just as apparent.
The essential symmetry of the treatment
is clear if one notes that the concept of
simultaneity is used in that inertial sys-
tem in which both of the brothers are
initially and finally at rest.

By a simple but interesting transfor-
mation, it is possible to relate the age
difference of the brothers to their changes
in velocity. For symmetry, allow both
brothers to move, with velocities corre-

sponding to v, and v,. Then the differ-
ence between their elapsed times ¢,” and
i,/ is given by

B =t = f1(1/y) = (1/y2)de =
[(1/v1) = (1/%2)1t = ftd[(1/v1) = (1/2)]

Since we have postulated that v, =v, =1
(that is, both brothers are at rest in the
system in which ¢ is measured) at the
start and finish, the first term on the right
vanishes. If the velocity changes are
thought of as discontinuous (being ex-
pressed as changes in 1/v), the second
term becomes a sum, giving:

t =t = ZtA(1/v:) — ZtA(1/v1)

This illustrates both the symmetry of the
treatment and the importance of changes
in velocity. Note that only the magni-
tudes of the velocities enter, and that the
motion need not be confined to the
x-axis,

Accelerated Coordinate Systems

It is of some interest, although not
necessary for this problem, to inquire
what happens in an accelerated coordi-
nate system. In the treatment given in
the preceding section, the system $’ was
not accelerated, but the traveler simply
left it, like a man jumping off a train.
Now we suppose that the train slows
down with the man on it. The coordinate
system (that is, the train, or a line of
space ships if you prefer) carries meas-
uring rods and clocks by which times and
distances are measured. It is accelerated
by applying power to the wheels or firing
rockets at times considered simultaneous
in itself. We start again with Eqgs. 1 and
2 and suppose that the acceleration oc-
curs suddenly at #=0. We now stand
in S and watch the process. We note that
the acceleration does not now seem to be
simultaneous; Eq. 2 shows that, at each
t, it occurs at an x given by x = (¢2/v)t.
Thus the acceleration looks like a wave
traveling with the velocity ¢2/v. (The
fact that this velocity is greater than ¢ is
not objectionable since the wave does
not convey a signal.)

An acceleration wave in the form of a
step of finite amplitude will not retain its
shape since the wave velocity varies with
v; therefore we deal at first with a step
wave of infinitesimal amplitude dv. The
new Lorentz transformation after the
wave has passed is

#=(y+dy)x— (v+do)t]  (3)
v +dou

t=(y+dy) [t— *72—4 (6)

where t/ retains its meaning as a time
considered simultaneous in the new S$’.
However, it no longer corresponds to the
clock readings in the new S’ except at
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A’ =0. To see this, we note that a clock
at a given &’ does not change its reading
suddenly when the acceleration occurs,
while #” does make a sudden change. The
latter is computed by subtracting Eq. 2
from Eq. 6, evaluated at the appropri-
ate place and time in S—that is, at x =
(¢?/v)t, with the result that ¢’ at a given
point changes suddenly by the amount

dt’ =— yxdo/c* =— y’x'dv/c*

The clock reading at ", which we shall
call T”, does not suffer a corresponding
instantaneous change, so that a differ-
ence between 77 and ¢’ appears:

AT =) =y EE (7

A similar treatment applied to Egs. |
and 5 shows that the change in & at a
given point (say a given scale division on
an actual measuring rod in $”) is equal
to zero. This is not trivial; x” is not de-
fined as a scale reading but as a coordi-
nate in terms of which the Lorentz trans-
formation is valid; scale readings, like
clock readings, cannot change suddenly,
but their interpretation as coordinates
can. For example, suppose that an ac-
celeration were made to take place as a
wave traveling with a velocity (in §)
other than ¢2/v. Then there would be a
change in &’ at a fixed scale reading in .
The observer in $” would interpret this
as an actual physical expansion or com-
pression of his system arising from the
fact that the acceleration no longer oc-
curs simultaneously at all points in his
system. In other words, the specification
that the acceleration be simultaneous ac-
cording to # is necessary if we require
that no “strains” be introduced into §”.

The concept of an acceleration wave
with velocity ¢2/v in § gives a simple pic-
torial representation of the generation of
a Lorentz contraction with no discon-
tinuous coordinate changes. Consider a
measuring rod in $” with an apparent
length ! in S. The time interval in § for
the wave to pass the length of the rod
is {/[(¢?/v) —¢]. During this interval,
one end is moving faster than the other
by the amount dv, and the apparent final
change in length is

—Idov/| (¢*/v) — v} =— y*lvdv/c?

According to the Lorentz contraction
1 =1/v. Differentiating this, we find that

dl =—yl'vde/c* =~ y*lodo/ c?

in agreement with the result obtained
from the wave picture.

It is now of interest to find out whether
Eq. 7 is consistent with general relativity,
which says that two clocks, at a distance
¥’ apart in a system suffering accelera-
tion a’, will appear to differ in rate by
the amount @’x’/c?, and therefore will
acquire a difference in reading x’du/c?
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if the acceleration continues just long
enough to produce a velocity change du’.
The velocity change du’ is a small incre-
ment of velocity from rest, as seen by the
observer in the accelerated system; to
find the corresponding change in the
velocity v as seen by an outside observer,
we differentiate the relativistic formula
for the composition of velocities, with the
result that dv = (1/v2) du’. The change
in clock readings, expressed in terms of
dv, is therefore in agreement with Eq. 7,
and we have derived the change in clock
rates in an accelerated system using spe-
cial relativity alone. The generalization
to a gravitational field requires, of
course, the use of the equivalence prin-
ciple of general relativity.

Now we wish to consider the effect of
a finite change in v, which can be
thought of as taking place by means of a
set of superimposed infinitesimal step-
wise acceleration waves. The resulting
composite wave can be stepwise at only
one point because the wave velocity
varies with ». In the case of a stepwise
increase in v (assumed to be initially
positive) at x=0 and ¢=0, the wave
will spread out in the forward direction
as t increases, and cannot be defined for
x <0, t<O0. In the case of a decrease
in v at the same place and time, the wave
is spread out behind at earlier times, and
cannot be defined for x >0, t > 0. In
order to generate such a wave, the firing
of the rockets in the line of space ships
defining $” must be scheduled differently
at different points; if the acceleration is
instantaneous at one point, it must be
spread out, according to local clock read-
ings, and the rate of acceleration must
be correspondingly reduced, at other
points. This corresponds to the fact that
each velocity increment must occur si-
multaneously in #, while the clocks do
not continue to indicate #’.

After the complete acceleration wave
has passed, the total change in clock
readings is obtained by integrating Eq. 7.
If the relative velocity changes, for in-
stance, from 0 to v, we find

- L x
T -t = /' v = dv=—
Jo c* ¢

tanh™ %) (8)

This is not to be confused with the “time
correction” used earlier, which has the
same value only when v «¢. The “time
correction” is the result of a discrepancy
in the estimation of simultaneity in two
different coordinate systems with rela-
tive motion; Eq. 8 represents a desyn-
chronization of clocks in the same co-
ordinate system.

Finally, we inquire what relation this
has to the “paradox.” When B’ stops,
suppose that he brings his whole coordi-

nate system to rest with him, and then
compares the clock in his system at the
location of B with the watch of B. This
clock is out of synchronization with his
own by the amount shown by Eq. 8, but
he is presumed to be clever enough to
know this (or to find it out by meas-
urement after he has stopped), so he cor-
rects for it, and the actual value of Eq. 8
does not enter into the result. He might
just as well have used the already exist-
ing system S, in which he is at rest after
stopping, and simply taken the reading
of the clock opposite which he stopped
to be elapsed time as estimated by B,
which leads to the same result and is
equivalent to the choice of Eq. 4 for the
relation between the elapsed times.

Implications for Space Travel

The great recent interest in the *“clock
paradox” is based on its possible conse-
quences for travelers in space; this tran-
scends in popular appeal the more basic
matters of principle involved. Therefore
let us look at it from that standpoint.
First, could an acceleration tolerable to
human beings, acting for a reasonable
time, produce velocities great enough to
give an appreciable time dilatation? To
answer this, we must find the distance x
(in the rest system of the starting point)
traveled in time ¢’ (in the traveler’s rest
system) while the traveler feels the con-
stant acceleration a’. We first find the
velocity v by integrating the relation
dv=(1/¥?)dv’ (introduced in the pre-
ceding section), noting that du’/dt’ = &,
with the result

&
v/¢ = tanh > t

Then

/wt d J{v' d
X = vdt = vodt' =
J0 0

-C—, (cosh Lyp- 1)
a ¢
’

If x is measured in light years, ¢’ in
years, and a’ in units equal to the normal
gravitational acceleration at the surface
of the earth, then

- 097 LA
= (cosh 0.97t 1)

This is a remarkable result. For ex-
ample, a man traveling for 21 years
under a constant acceleration of 1 g
would go a distance of 1.2x10° light
years! If he then reversed his accelera-
tion, he would finally come to rest at a
point 2.4 x 109 light years distant from
his starting place, having spent 42 years
of his life on the trip. The results are
less dramatic for shorter trips; even for
rather high accelerations (on a human
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scale), the relativistic time modifications
are negligible for travel within the solar
system. For example, a man going to
Neptune and stopping there, at an ac-
celeration of 10 g, would spend 5 days
on the trip but would gain only 1.5 min-
utes of time.

Then there is the question of the
energy involved. The man who travels
for 21 years at 1 g reaches a value of v
equal to 1.2x10° at which point his
kinetic energy is utterly fantastic. If his
vehicle weighs (at rest) 1 ton, then its
energy content is equal, in round num-
bers, to the energy released in the an-
nihilation of 10° tons of matter, or in

the fission of 10?2 tons of uranium; it
would be sufficient to melt the entire
crust of the earth to a depth of about
30 miles. The man who makes the more
modest trip to Neptune at 10 g reaches
vy =1.0025, and the kinetic energy of his
1-ton ship (2 x 1017 joules) corresponds
to that released in the fission of about 2
tons of uranium; because of the limited
efficiency of rocket propulsion, the actual
energy needed would be much greater.
The use of such energy quantities in a
rocket ship is so far beyond any foresee-
able practical limits, and the time gain
in that case is so small, that it is hard to
picture a practical case of space travel

Image of the Scientist

among High-School Students

A Pilot Study

Margaret Mead and Rhoda Métraux

This study is based on an analysis of
a nation-wide sample of essays written
by high-school students in response to
uncompleted questions. The following
explanation was read to all students by
each administrator. “The American As-
sociation for the Advancement of Sci-
ence (1), a national organization of sci-
entists having over 50,000 members, is
interested in finding out confidentially
what you think about science and scien-
tists. Therefore, you are asked to write
in your own words a statement which
tells what you think. What you write is

There is a great disparity between the large
amount of effort and money being devoted to in-
teresting young people in careers as scientists or
engineers and the small amount of information we
have on the attitudes those young people hold
toward science and scientists. The Board of Di-
rectors of the AAAS has on several occasions dis-
cussed this disparity and the desirability of learning
more about what high-school students. actually
think of science and scientists. This paper is one
result of those discussions. Hilary Deason, director
of the association’s Traveling High-School Science
Library Program, made all of the arrangements
with the high schools and supervised the collection
ol the students’ essays. The analysis of those essays
and the preparation of this report were the respon-
sibility of the two authors, Margaret Mead and
Rhoda Métraux. Dr. Mead is associate curator of
anthropology, American Museum of Natural His-
tory, New York, and Dr. Métraux is a research
fellow at Cornell Medical College, New York.
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confidential. You are not to sign your
name to it. When you have written your
statement you are to seal it in an en-
velope and write the name of school on
the envelope. This is not a test in which
any one of you will be compared with
any other student, either at this school,
or at another school. Students at more
than 120 schools in the United States
are also completing the statement and
your answer and theirs will be consid-
ered together to really find out what all
high-school students think as a group of
people.”

In general, the study shows that, while
an official image of the scientist—that is,
an image that is the correct answer to
give when the student is asked to speak
without personal career involvement—
has been built up which is very positive,
this is not so when the student’s per-
sonal choices are involved. Science in
general is represented as a good thing:
without science we would still be living
in caves; science is responsible for prog-
ress, is necessary for the defense of the
country, is responsible for preserving
more lives and for improving the health
and comfort of the population. How-
ever, when the question becomes one of
personal contact with science, as a career

in which the time dilatation can be con-
sidered important. This conclusion, of
course, does not detract from the interest
of the fundamental principles involved
in the “clock paradox” (4).
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choice or involving the choice of a hus-
band, the image is overwhelmingly nega-
tive.

This is not a study of what proportion
of high-school students are choosing, or
will eventually choose, a scientific career.
It is a study of the state of mind of the
students among whom the occasional fu-
ture scientist must go to school and of
the atmosphere within which the science
teacher must teach. It gives us a basis
for reexamining the way in which sci-
ence and the life of the scientist are be-
ing presented in the United States today.

Objectives

Our specific objectives in this study
were to learn the following.

1) When American secondary-school
students are asked to discuss scientists in
general, without specific reference to
their own career choices or, among girls,
to the career choices of their future hus-
bands, what comes to their minds and
how are their ideas expressed in images?

2) When American secondary-school
students are asked to think of themselves
as becoming scientists (boys and girls)
or as married to a scientist (girls), what
comes to their minds and how are their
ideas expressed in images?

3) When the scientist is considered as
a general figure and/or as someone the
respondent (that is, the student writer)
might like to be (or to marry), or, alter-
natively, might not like to be (or to
marry), how do (i) the postive responses
(that is, items or phrases, not answers)
cluster, and (ii) the negative responses
(that is, items or phrases) cluster?

4) When clusters of positive responses
and clusters of negative responses are
compared and analyzed, in what respects
are the two types of clusters of responses
(1) clearly distinguishable, and (ii) over-
lapping?

5) Is a generally positive attitude to
the idea of science, an attitude which we
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