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every scientist knows, the problem of how 
best to average a set of data is not always 
easy to solve. First of all, we have a choice 
among the conventional measures of "cen-

tral  tendency" or " l~cat ion, '~such as  the mode, me-
dian, arithmetic mean, geometric mean, or harmonic 
mean. Each of these measures has its uses and its 
restrictions, but the problem is sometimes more com- 
plicated than the simple choice of one of these sta- 
tistics. Complications are especially likely to arise 
when the quantity we want to average is a nonlinear 
function of the readings obtained with a particular 
instrument or indicator. Under these circumstances 
the distribution of the indicator readings is skewed 
relative to the distribution of the values we are  inter- 
ested in, and the problem becomes how to undo this 
skewness and the bias i t  produces. 

Two possible procedures are available: ( i )  we can 
eliminate the skewness by making an appropriate 
transformation of the data, or (ii) we can bypass the 
problem of skewness by using a measure, such as the 
median or the mode, that is invariant under nonlinear 
monotonic transformations of the scale values. But 
these alternative procedures are not open to us un-
conditionally, fo r  it  matters coiisidesably on what type 
of scale the measurements a re  made. Let us first ex- 
amine the relationship between the various kinds of 
scales of measurement and the several measures of 
central tendency, and then let us consider an example 
of how we might proceed to rectify the bias in the 
arithmetic mean when this bias results f rom the use 
of an arbitrary measure that is nonlinearly related to 
the variable we are concerned with. 

Scales and their statistics. The kinds of scales on 
which we measure things can be divided into four  
classes : nominal, ordinal, interval, and ratio ( 1 ) .  To 
each of these types of scales certain statistics are  ap-  
propriate and others are not. Hence it  is a matter of 

first importance to know which kind of scale we are 
dealing with. The kind of scale we work with depends, 
of course, upon the concrete empirical operations we 
are able to perform, and, as  we might expect, the 
character of the operations determines the kind of 
statistics that are permissible. 

This comes about because a scale erected by a given 
set of operations can be transformed in certain per- 
missible ways without doing violence to the essential 
nature of the scale. As a.matter of fact, the best way 
to specify the nature of a scale is in  terms of its 
"group structure"-the group of mathematical trans- 
formations that leave the scale form invariant. And 
it follows quite l~atural ly  that the statistics applicable 
to a given scale are  those that remain appropriately 
invariant under the transformation permitted by the 
scale. 

This is a simple but powerful principle. It applies 
to all the kinds of statistics we use in the treatment 
of experimental data, but since we are in this article 
( 2 )  concerned only with the statistics of central tend- 
ency we can summarize the relations between these 
statistics and the four  kinds of scales by means of 
Table 1. I t  should be noted that the last column of 
the table is cumulative in the sense that a given sta- 
tistic can be used with the scale indicated, as well as  
with all the scales listed in the rows below. The list of 
empirical operations in the second column is likewise 
cumulative, in the sense that in  order to set u p  a given 
scale we need all the operations in the second column 
down to and including the operation listed opposite 
the scale. 

Table 1 shows that the mode is the most general 
measure of central tendency. I t  is the only one of 
these statistics that may properly be used with a 
nominal scale, but it  is a measure that may be used' 
with all other types of scales as well. The nominal 
scale is the most general, or, if you like, the most 

Table 1. Each of the four kinds of scales (column 1) rests on a set of empirical operations (column 2) .  Each 
scale remains invariant under certain mathe~~latical transformations (column 3 ) ,  and admits of certain measures of 
central tendency (column 4). 

Scale Empirical operations 

Nominal Determination of equality 
Ordinal Determination of greater or less 
Interval Determination of the equality of 

intervals or of differences 
Ratio Determinations of the equality 

of ratios 

Permissible transformations 

Permissible 
measures of 

central 
tendency 

Any one-to-one substitution 
Any increasing monotonic transform 
Multiplication by and addition of a constant 

Mode 
Median 
Arithmetic mean , 

Multiplication by a constant Geometric mean 
Harmonic mean 



primitive type of scale. The scale values are  used only 
as  identification tags f o r  types o r  classes, such as 
model numbers, and with nominal scales the mode call 
be used to indicate which type or class has the most 
members in it. 

The median can be used as  a measure of central 
tendency only if the scale rests a t  least on an order- 
ing operation that permits us to establish a rank order 
among the items measured. The classic example of an 
ordinal scale is the scale of hardness, where the rank 
order is established by the determination of what min- 
eral will scratch what other minerals. The median nlay 
be used with ordiual scales such as hardness, and also 
with interval and ratio scales. As a matter of fact, the 
slight loss in  statistical "efficiency" that results froin 
computing the median instead of the arithmetic mean 
is often more than made u p  by the fact that the 
median is relatively insensitive to skewness. I t  is prob- 
ably fair  to say that  the median is exploited much less 
than it oucrht to  be. 

u 


Strictly speaking, the arithmetic mean is not a 
proper statistic fo r  a n  ordinal scale, although it is 
often used in averaging such ordinal values as  scores 
on tests and grades in  courses. Only when we possess 
some operation for  assuring the equality of intervals 
is the arithmetic mean appropriate. The classic ex-
amples of interval scales are the scales of tempera- 
ture, Fahrenheit and Celsius. When we use these 
scales i t  is proper to  speak of mean temperatures-as 
well as median or modal temperatures. The interval 
scale has equal units, but its zero point is arbitrary. 
Hence on a n  interval scale the computation of a geo- 
metric mean or a harmonic mean makes no sense. 
These two statistics are  reserved exclusively fo r  ratio 
scales on which the zero point is fixed. Exanlples of 
ratio scales are  the everyday scales of length, weight, 
volume, and so forth. With ratio scales, all measures 
of central tendency are in  principle appropriate, and 
which measure we decide to use must be dictated by 
our purpose. 

The geometric mean and the harmonic mean can 
sometimes be used to correct the skewness in a set of 
data. Since these measures edect a transformation of 
the data, they are good for  special cases that may 
arise in- practice: The geometric mean is appropriate 
when the quantity we are interested in is proportional 
to the logarithm of the indicator reading, and the 
harmonic mean is appropriate when the relation is a 
reciprocal one. 

Situations often arise, however, in which thr  re-
quired function is neither logarithmic nor reciprocal. 
The relation may in fact be such that no simple 
mathematical function can express it. EIow then do we 
proceed ? 

An experimental ezample. The question of how we 
might average indicator readings when these readings 
are  nonlinearly related to  the quantity we are trying 
to measure arose in an experiment on loudness. A 
group of 45 subjects undertook the relatively simple 
task of dividing a range of loudness into four  equal- 
appearing intervals. The top end of the range was the 

loudness produced by a 1000-cy/sec torie about 90 d b  
above threshold. The bottom end of the range was 40 
d b  lower. 

The subject produced the individual loudnesses by 
pressing one or another of five keys. Above each of  
the three middle keys there was a dial by means of 
which the subject could adjust the loudness. His  task 
was to adjust each of the three dials until the loudriess 
intervals between the successive tones all sounded 
equal to  one another. H e  was required to test the ap-  
parent equality of the intervals by listening in both 
the ascending and descending order. Each subject re- 
peated the experiment three times. 

The results were recorded with the aid of a vacuum- 
tube voltmeter connected across the earphones. Since 
this was a Iogarithmic voltmeter, i t  was convenient to  
record the subject's settings in decibels relative to an 
arbitrary standard. Then with the data recorded in 
decibels, the question arose how to average them. 

The common procedure in  such instances is simply 
to compute the arithmetic mean of the readings as  
they are  recorded. Second thought suggests, however, 
that the subjects were not listening to the logarithm 
of the voltage across their earphones. Rather they 
were listening to loudness, and their performance was 
in  ternis of the loudness heard. Since they were divid- 
ing a range into equal intervals, we can assume that 
the loudness they were dividing is measurable on a t  
least a n  interval scale. If this is true, we are justified 
in  taking arithmetic means of the loudness values, but, 
of course, me do not start with loudness values-we 
star t  with decibel readings. 

I t  appears that the problem can be solved by an 
iterative process involving successive approxi~nations. 
We can average the decibel values to obtain a first 
approximation of the relation between decibels and 
loudness. Then, using this approximation we can con- 
vert from decibel to loudness values and proceed to 
average the loudness values. This average provides a 
closer approximation to the relationship we seek, and 
using this closer approximation, we can repeat the 
process to determine the relationship to a still closer 
approximation. I n  this way we can make the approxi- 
mation as close as  we desire. 

Concretely, the arithmetic means of the decibel 
readings were flrst deten:iined and plotted (small cir- 
cles in Fig. 1 ) .  The end points of the loudness range 
(plotted vertically) are arbitrarily called zero and 
100, and the values 25, 50, and 75 mark off the equal- 
appearing intervals as set by the subjects. We see that 
over this range the subjective loudness is not a linear 
function of decibels. Next we draw a smooth curve 
(solid line) through the circles, and with the aid of 
this curve n7e change each of the original decibel read- 
ings into a corresponding loudness value. Then we 
average these loudness values and proceed, again via 
the curve in Fig. 1,to find the decibel readings that 
correspond to the averages of the loudness values. 
These new decibel readings can next be plotted in Fig. 
1 to determine a new curve, the dashed curve. The 
process can then be repeated to determine a still better 
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Fig. 1. Forty-five subjects adjusted three attenuators in 
order to divide a 40-db intensity range (abscissa) into 
four equal-appearing loudness intervals (ordinate). The 
circles, showing the arithmetic means of the decibel set- 
tings, provide a first approximation to tho relation be- 
tween loudness and decibels. The dashed curve shows the 
better approximation obtained by averaging the loudness 
values that were determined from the solid curve. 

curve than the dashed curve, but in this particular ex- 
ample the new curve would be almost indistinguish- 
able from the dashed ourve. 

The successive functions obtained by this procedure 
have greaier and greater curvature, relative to that 
of the function determined by the original averaging 
of the decibel readings. The degree of the change in 
curvature depends on the variability of the data. I f  
variability were nonexistent, the curvature of the 
function would not be changed by this process. 

What we are assuming here is that it  is more sen- 
sible to average loudness than to average decibels. As 
a further test of the reasonableness of this assump- 
tion, let us examine the forms of the distributions of 
the subjects' settings. Since the subject's task was to 
divide a fixed interval into four  equal sections, it  is 
reasonable to  assume that, when measured in the 
proper units, the errors would distribute fairly nor- 
mally, and that the greatest variability would attach 
to the setting that divides 'the total range in half-the 
midpoint on the ordinate of Fig. 1.W e  can also ex- 
pect that the variability of the settings f o r  the points 
25 and 75 would be about the same size. 

When we average the decibel readings, these expec- 
tations are not borne out. As shown in the upper part  
of Fig. 2, the histogram is broadest f o r  the 25 point 
and narrowest fo r  the 75 point. On the other hand, 
when we average the loudness values the distributions 
turn out as expected. As is shown by the bottom row 
of histograms in Pig. 2, the variability is greatest fo r  
the settings made to the midpoint of the loudness 
interval. 

The experiment described here has been repeated a t  

several intensity levels and similar results have been 
obtained. It has been possible to pool the data f o r  49 
subjects who made a total of 405 settings a t  each of 
the three quarter-section points. The loudness values 
were averaged and the standard deviation computed 
and expressed as  a percentage of the range of loud- 
ness the subject was working with. These mean per-
centage variabilities are shown i n  Table 2. Corre-
sponding percentage variabilities fo r  the decibel val- 
ues themselves are  also shown in Table 2. These latter 
values are based on only about half the data, but 
they are quite representative of the whole array. 

I n  contrast to the "reasonable" behavior of the vari- 
abilities computed from the loudness values, the vari- 
abilities f o r  the decibel readings show a drastic change 
along the scale. As a matter of fact, the averaging of 
decibels would suggest that  the subjects a r e  three 
times more variable when they adjust the tone to the 
lower quarter point than when they adjust the tone 
to the upper quarter point. That this unreasonable 
outcome can be rectified by the simple procedure of 
dealing with the loudness values themseIves, by means 
of a n  empirical conversion function, is testimony to 
the importance of computing our statistics on the 
proper values and not on a set of arbitrary measures 
that are nonlinearly related to the values we are  con- 
cerned with. 

One further point deserves mention. I n  the fore- 
going example we have treated the data by graphical 
methods throughout. When, as sometimes happens, it 
is possible to approximate the relation between loud- 
ness and sound intensity by an analytic expression, 
we can dispense with graphs and use formulas. Since, 
in our example, loudness is approximately propor-
tional to the cube root of the sound intensity, we can 

DISTRIBUTIONS OF DECIBEL VALUES 

DISTRIBUTIONS OF LOUDNESS VALUES 

Fig. 2. Each histogram represents 135 adjustments ( 3  by 
each of 45 subjects). When measured in loudness r,alues, 
the adjustments to the midpoint show the largest standard 
deviation (middle histogram). When measured in decibels, 
the lowest quarterpoint shows the largest standard devia- 
tion. The width of each bar represents 2 db or 5 loudness 
units, as the case might be. 



Table 2. Mean percentage variabilities. 

Point on Computed from Computedfrom 
loudness scale loudness values decibel values 

11.8 
8.5 
3.9 

approximate the average of the loudness by the 
followillg procedure. 

I) Divide each decibel value by 3. 

2)  Find the antidecibel values. 

3 )  Average these values. 

4) Find the decibel value corresponding to this average. 

5 )  Multiply this decibel value by 3. 


This procedure will undo the skewness caused by 
a cube-root relation between loudness and intensity. 
F~~other mathematical relations an analogous pro-
cedure can be applied. 

of course, since there are other causes of skewness 
than the one that concerns us here, the foregoing pro- 

cedure is no panacea. F o r  soine kinds of ex~erimeiital 
data the arithinetic mean is a poor measure of central 
tendency, not because the measurements are made on 
other than an interval or a ratio scale, but simply 
because out-sized errors sometimes occur in one direc- 
tion or another. The resulting skewness can usually 
best be coped with by resort to medians (3). 
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0SMOTIC pressure no longer occupies the 
central role in  the theory of solutions that 
it did a half-century ago, but in  biology it  
retains, nevertheless, its importance as a 

concept, by reason of the membranes existing in  living 
organisms. It has become evident from questions pu t  
to me that the theories of solution upon which many, 
if not most, biologists were brought up  are now so old- 
fashioned that I might perform a service to the large 
biological clientele of this journal by presenting the 
subject in  modern terms, emphasizing primarily the 
concepts involved. 

The first important step in  developing a theory of 
solutions was that made by van't Hoff, 1887, who de- 
rived the relationship that the osmotic pressure of a 
substance i n  sufficiently dilute solution is equal in 
magnitude to  the pressure it u~ould have if it existed 
as  a gas in  the volume occupied by the solution. This 
made it  possible to determine the molecular weight of 
a nonvolatile solute by measuring its osmotic pressure 
in  a solution of known concentration. Using this "van't 
Hoff law" in Carnot cycles, he derived equations re- 
lating molecular weight to the lou~eri~lg of the freezing 
temperature and the rise in boiling temperature of the 
solvent. These relationships became the heart of the 
physical chemistry of a half-century ago. Nernst dis- 
cussed electrode potentials in  terms of balance between 
emf, solution pressure of an electrode and osmotic 

pressure of its ion. Every textbook of physical chem- 
istry expounded osmotic pressure a t  some length, and 
some investigators made great efforts to illeasure it 
with precision. 

But  this quasi-gas model of solutions, like the first 
Wright airplane, with the rudder in  front, proved to 
be a poor basis fo r  further progress. It treated the 
solvent only as providing volume f o r  the quasi-gaseous 
solute. It is strictly true, as van't Hoff himself pointed 
out, only a t  infinite dilution, but many investigators 
overlooked the restriction and applied it a t  concentra- 
tions where even gases cease to follow the gas laws. 
One enthusiast determined the freezing temperatures 
of concentrated solutions of calcium chloride and 
ascribed all deviations from the formula to  the re-
moval of par t  of the water from i ts  role as  solvent. 
The water of hydration thus calculated exceeded all 
the water in  the vessel. H e  was, of course, deeply hu- 
miliated when a critic pointed this out. 

One of van't Hoff's explicitly stated assumptions in 
deriving the equation f o r  osmotic pressure was that 
the solute i n  dilute solution is described by Henry's 
law, namely, that  its partial pressure is proportional 
to  its molar concentration. This had been abundantly 
verified for  dilute solutions of gases, and it  is, indeed, 
almost a logical necessity; the effecB of dissolved 
molecules too f a r  apart  to  affect one another must be 
proportional to their number. What  was not appre- 


