
object plane is 50 cm from the target and an area of 
10 x 10 cm is viewed with a resolution of 0.5 mm, 

then the optimum value of t is approximately 

2 ms. This means that with a contrast ratio of 0.1 
( S  taken as  one, as is customary in physical measure- 
ments) the optimum integrating time, t ,  is equal to  
0.2 second, which is the approximate integrating time 
of the eye. 

There are other uses fo r  the scanning x-ray system 
than that of intensifying the fluoroscopic image. It 
may be used to study the decay of fluorescence by 
employing the crystal that is to be studied as the 
detector screen f o r  the photomultiplier tube, and view- 
ing a small slit or aperture as  the object. Since the 
writing time per line is of the order of 60 ps, then any 
fluorescence that lasts long compared to a fraction of 
a microsecond will appear to distort the image in the 
direction of scanning. I n  its present form the instru- 

ment serves as a low-power microscope with a magnifi- 
cation of some 10 diameters. With pinholes of a few 
microns in diameter, however, and a triple coincidence 
photocell circuit, the photomultiplier tube noise can be 
reduced to a negligible value, and, wit& the small num- 
ber of photons that emerge through such a small hole, 
an image can be constructed if sufficiently long inte- 
grating time is used. Higher magnifications may be 
achieved in this way. Other uses include means for  
the production of short time pulses of x-rays, either 
singly or repetitively, and a means of a rocking type 
of Laue experiment fo r  tiny crystals, wherein the 
crystal is held fixed and the source moves. 
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The Relations between Symbolic Logic and 
-

Large-Scale Calculating Machines1 

Edmund C. Berkeley 
Edmund C .  Berkeley and Associates, N e w  Y o r k  City 

SCIENTISTS I N  MOST F I E L D S  are becoming 
familiar with the large-scale calculating ma-
chines-the so-called mechanical brains-that 
have made possible the solution of many mathe- 

matical problems hitherto considered insoluble. Only 
a relatively few scientists, however, understand sym- 
bolic logic. It is off the main path. What  is i t ?  
And why is it important in relation to mechanical 
brains ? 

Symbolic logic, in its broadest sense, is a new science 
that has the following characteristics: 

( a )  It studies mainly nonnumerical relations. 
( b )  I t  seeks precise meanings and necessary con-

clusions. 
(c) I t s  chief instrument is efficient symbols. 

I t s  closest cousin among the sciences is mathematics. 
But  symbolic logic d 8 e r s  from mathematics; to  make 
the differences clear, mathematics and symbolic logic 
may be compared in a number of respects. 

Mathematics deals with words like plus, minus,  

1 Based on a n  address before the  Association for Cornput. 
ing Machinery, April 19, 1949, Oali Ridge, Tenn. 

October  6, 1950 

times, divided by. Symbolic logic deals with more 
basic words like yes, no, and, or, not, the,  o f ,  is, same, 
different, some, all, none. Mathematics deals mainIy 
with numbers and their properties. Symbolic logic 
deals mainly with statements, classes, and relations. 
Mathematics concentrates on answers to questions 
like : "How much?" ((HOW many ?" ('How f a r ?" 
'(How long?" Symbolic logic deals with questions 
like: "What does this mean?" "Does this set of state- 
ments have conflicts or loopholes?" "What is the 
basis of this proof ?" 

An example of a rule in mathematics is, "The re-
ciprocal of the reciprocal of a number is the number 
itself." An example of a rule in  symbolic logic is, 
"The denial of the denial of a statement is the state- 
ment itself." 

Historically, symbolic logic is the result of applying 
the powerful technique of mathematical symbolism to 
the suhject matter of logic. 

Many scientists comprehend the content of mathe- 
matics. But what is the content of symbolic logic? 
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There are four or five fairly well-recognized branches 
of symbolic logic. One of these is &mlean algebra7 
the algebra of and. ov,%otand statements (or  classes). - , , 

F~~example, a rule from ~~~l~~~~ algebra is that 
"neither a nor b is the same as not a and not b." 
Here a and b are statements or classes, but not num- 

As a of work by 'laude 
Boolean algebra has proved to be useful in designing 
and checking electrical circuits using relays or elec-
tronic tubes. This application of symbolic logic is 
important in  the design and construction of auto-
matic computers. 

Another branch of symbolic logic is the one that 
deals with the foundations of mathematics. I t  has 

2 .  What i s  a suflicient aet of orders to instruct a machine 
to solve any possible pyoblem? 

3. h ~ h a t  is the smallest set of oyders which still leaves a 
well-functioning machine? (For  example. in the method 
pro~osecl by John roll S e n ~ n a ~ i ~ l  for instructi~lg the automatic 
colllputcr ENIAC, only about 70 ordeys are  needed.) 

4. How call ~iinchines be coustructed to determine almost 
all their own orders? 

5.  Rl:~chi~icsdo elementary ayithmetical operations like 
addition, subtraction, ~llultiplication, division, and reference 
to a table;  but what aye elementary logical operations tha t  
lnaclline"hould also do? 

The last question can be answered in part.  Some 
of the logical operations that may be found in some 
mechanical brains, and that need to be built into really 
versatile automatic computers, are decision, compari- 
son, selection, choice, checking, matching, merging, 

studied such questions as  these : ('What is a n ~ m b e r ? ~ ' t a b u l a t i n g ,  sorting. Additional logical operations, 
'(What is a variable?" "What is a mathematical 
function?" I t  has answered these questions to  a 
large extent. One of the great books in  the history 
of symbolic logic is Prilzcipia Mntheviatica, by Ber- 
trand Russell and A. N. Whitehead (published 1910- 
13) ,  which aimed to furnish a logical foundation for  
all of mathematics. 

A third branch of symbolic logic is called the 
algebra of relations. This deals with such concepts 
as symnletric relations, transitive relations, connected 
relations, series, etc. 

Still another branch deals with what is called the 
decision problem, i.e., the procedure fo r  deciding that 
a statement is true or false. Symbolic logicians have 
investigated the problem of proving statements in 
any mathematical system. These studies have pro- 
duced some remarkable results. F o r  example, it  can 
be shown that there are statements in arithmetic, and 
in other mathematical systems, that can never be de- 
cided as true or false. Nevertheless, mechanical brains 
can be applied to deciding statements that can be de- 
cided, in problems that would take years of human 
labor to decide. 

So much for  a n  introduction to symbolic logic. 
How is it  related to large-scale calculating machinery? 

When we use desk calculating machines, we notice 
the numerical operations in a calculation; but we tend 
to carry out the logical operations in our heads or on 
paper and we tend not to notice them. When we 
begin to use automatic computers that perform calcu- 
lations in long sequences, we find a t  once that we must 
pay attention to nonnumerical reasoning operations, 
as well as  to numerical operations. I n  fact, we notice 
a long series of questions, all in the territory of sym- 
bolic logic rather than in mathematics. Here are 
some of them: 

1. What is the best way to give n machine instructions 
or orders? 

such as  implication, exception, denial, are in  process 
of being built into mechanical brains. 

As long as we do nlathematics using pencil and 
paper and, perhaps, a desk calculating machine, we 
can get along moderately well without symbols that 
express the logical operations. When we start dealing 
with mechanical brains, me find i t  helpful to express 
the logical operations in symbols. With these symbols, 
we grasp a power that we did not have before. F u r -
thermore, these symbols can often be made to fit 
into ordinary inathematical language. Then inachine 
routines are  no longer half flesh and half fowl; they 
all take on the same mathematical, logical, symbolic 
nature. 

SYMBOLIC	LOGICIN EXPRESSINGTHE OPERATION 
ox A COUNTERMECHANISM 

As an example of the fusion of nlathematics and 
logic called forth by the requirements of large-scale 
calculating machinery, let us look into a n  Interna-
tional Business Machines punched-card tabulator, and 
consider a counter mechanism that can handle nuinbers 
of 6 decimal digits. A tabulator is a machine that 
either lists the information contained in a series of 
punched cards, or prints totals derived from them, or 
does both. I t s  operation is controlled by a plugboard, 
an assembly of plugwires (or patchcords) connecting 
hubs (or terminals), all set in a frame. This vired-up 
frame expresses the instructions fo r  a problem and is 
changed from problem to problem. 

I f  we examine the plugboard frame of a tabulator, 
we find 4 inputs and 1output f o r  the counter mecha- 
nism. The 4 inputs are: 

1. A set of 6 hubs. one for each digit, called counter entry, 
which taltes in a 6-digit number a. 

2. A si~lgle hub, called the add hub, which takes in a 
pulse p. 

8. A single hub, called the subtract hub, which taltes in 
a pulse q. 

4. d single hub, called the counter total control hub, which 
takes in a pulse r .  

Logically, a pulse can be only 1-the presence of a 



pulse-or 0-the absence of a pulse; in the machine, 
however, the timing of the pulse is also important. 
The output is a set of 6 hubs, called counter total exit, 
which puts out a nu~nber  b. 

We can express the operation of the countcr mecha- 
nism with two sinlple algebraic equations. Let the 
number held in the counter a t  any time be h. Then 
a t  any cycle x 

h, = 12,. ,( 1- r , - , )  + a ,  ( p ,  - q,) + 999999 p,q,, 
and 

b, = l&,r,. 

What do these two equations mean? I f  just p is 
impulsed, the counter adds a. I f  just q is impulsed, 
the counter subtracts a. I f  both p and q are i~npulsed, 
the counter adds 990999. I f  r is impulsed, the counter 
total exit reads out the number hcld in the counter, 
and the counter is a t  the same time cleared. Obvi-
ously, the mechanism mould be more flexible if we 
could read out the number in the counter mechanism 
without, necessarily, clearing it. I n  fact, IBM pro- 
vides a modified counter mechanism with which this 
is possible. 

Since a, b, and 15 are variables that can be regular 
numbers, this department belongs to mathematics. 
But p, q, and r are variables that call only be 1or 0, 
like "yes" or "no," and this department belongs to 
sy~nbolic logic. Only when we fuse the two dcpart- 
ments can we exactly express the operation of the 
counter mechanism. 

W e  have not yet gone very far ,  however, into the 
application of syinbolic logic to mechanical brains. 
Let us take another and more elaborate example of the 
uses of syn~bolic logic ill large-scale calculating ma- 
chinery. Let us take an actual problem, see how it 
can be programmed in a mechanical brain, and note 
horn questions of logic actually occur. A problem 
that ~vill require several subroutines is the one of 
fiiidirig the square root of a nuii~ber using an iterative 
formula, o r  one that gives a better result each suc- 
cessive time we apply it. One such formula f o r  
square root is 

where P is the number fo r  which we want the square 
root, and the x's are successive approximations. Each 
time me apply this formula me get a better approsi- 
nlation to the true square root. W e  begin by malring 
any kind of rough guess about the square root of the 
number Y, and n7ecall this first rough guess z,. 

To test the procedure, let us obtain the square root 
of 67.2. W e  choose 8 as a first guess, because 8 times 
8 is 64, and 9 times 9 is 81, and 67.2 is in between 

these results. So 8 is our first approximation, x,. I n  
Round 1,8 divided into 67.2 gives 8.4. The average 
of 8 and 8.4 is 8.20. This is x,, our second approsi- 
mation. I t  is correct to 3 figurcs. I n  Round 2, 8.20 
divided into 67.2 gives 8.195122. The average of this 
nuiilber and 8.20 is 9.1975G1. This is x,, our third 
approximation. It is correct to 6 figures. The re-
sult of the nest  round is 8.1975606125, x,. This is 
correct to 11figures. So we see that, with a reason- 
able guess and two or three divisions, we can obtain 
all the accuracy mc can ordinarily use. 

Good iterative formulas are like this: they approxi- 
mate the true vnluc quickljr, and they are very useful 
on auto~natic co~nputers. To perform this problem 
on a mar.hinc wc recognize 5 subroutines: the sub- 
routine f o ~  reading data fro111 input into storage; fo r  
carrying out the fornlula once; fo r  deciding whether 
to repeat tlie formula fo r  another round; fo r  prepar- 
ing to repeat; and the subroutine fo r  sending the 
answer from storage to output, and stopping. The 
third subroutine, deciding whether to repeat, is purely 
logical. 

~IECHANICALBRAINZAC 

Let us ilnagine and stipulate a sirnplc mechanical 
brain, 0' automatic computcr (ZAC, the "Z Autolnatic 
Computer"), able to do this problem. 

ZAC has an input tape, an output tape, and 70 
registers fo r  storage ordinarily of 8 decimal digits. 
ZAC has a computer, apd the con~puter can take in  a n  
operation O P  on one chancel, take in 2 nulnbers 
a and b on 2 more channels, and give out the result 
c on the fourth channel: 

ZAC has a program register, which holds each suc-
cessive instruction that governs the niachine. W e  can 
transfer nuliibcrs or orders illto and out of the pro- 
gram register. Some, but not all, numbers mill have 
meaning as  orders to ZAC. The prograln register 
regularly holds 5 digits: thc first 2 digits will be the 
nulnbcr of tlie order, 9,; the niiddle digit will be the 
kind of the order, 1;; and the last 2 digits will ordi- 
narily be the nuiiibcr of a register, r. At  any cycle, 
the order, or instruction, $8, Ic, r, stored in the pro- 
gram register tells the machine what it is to do a t  that 
cvcle. 

The kind-of-order numbers, 76, me shall suppose, can 
vary from 0 to 0. Using these LO numbers, we have 
sufficient flexibility to tell the machine all that we 
want i t  to do in finding square root. 

Thc rcgister nutnbcrs r vary from 1 0  to 79. Regis-
ters 1 0 4 0  will usually store orders having the same 
order nu~nber  as  the register number; registers 50-69 
~vi l l  usually store numbers in  the calculation; and 
registers 70-79 will usually store constants. 
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h- i 
Subroutine n 

w ae .m$ Meaning 

1. Reading data  10 4 50 Input  of Y to 50 
from input into 11 4 56 Input  of ml to 56 
storage 12 4 51 Input of % to  51 

13 6 19 Go to order 19 

2. Carrying out the 19 0 74 Division to computer 
formula once 20 1 50 Y to computer 

21 2 56 on to computer 
22 3 52 Y/@n to 52 
23 0 71 Addition to computer 
24 
25 

1 
3 

52 
53 

T/@,Lto computer 
m, + Y/mn to 53 

26 0 73 iliultiplicatbon to 
computer 

X,L+ Y/an to r*omputer 
W to  computer 
'h (an + Y/mn) = 5n+ 1 

to 57 
Go to order 82 

3. Deciding whether 32 0 75 rnequalitu to computer 
to repeat or  not 33 

34 
1 
2 

56 
57 

En to  computer 
rze + 1to computer 

35 3 69 T (an# ~ n + 1 )t o 6 9  

36 7 38 Go to  order 38 if 1fs 
in 69 

37 6 43 Go to order 43 

4. Preparing to 38 0 70 Tmnsfer to computer 
repeat 39 1 57 Old an t 1 to computer, 

equal new a n  
New mtt to 56 
Go to order 19 

5. Sending answer 43 5 57 on + 1 in 57 to output 
from storage 
to  output and 
stopping 44 D 44 Stop 

The most interesting of these sets of numbers is the 
kind-of-orders, k. Every k is followed by a n  r. This 
is the meaning : 

If k is 0, the machine transfers the operation stored in 
register r to the computer ant1 goes to the next order nu-
merically. 

If k is 1, the machine transfers the number in register r 
to  computer register a and goes to the next order numerically. 

If k is 2, the machine transfers the number in  register 1-

to computer register b and goes to the next order numerically. 
If k is 3, the machine transfers the computer result o t o  

register r and goes to  the next order numerically. 
If k is 4, the machine transfers the number on the input 

tape to  register r and goes to  the next order numerically. 
I f  16 is 5, the machine transfers the number in register r 

to  the output tape and goes to the next order numerically. 
If k is 6,  the machine is instructed to go to order r (ob-

taining i t  from register r ) ,  instead of (as  the machine nor-
mally does) going to the next order numerically. 

If k is 7, and if the number in register 69 is 1,the  machine 
is icstructed to go to order r ;  if k is 7,and if the number is 
not 1, the machine goes to  the next order numerically. 

If k is 8, and if the number in register 69 is 1,the machine 
is instructed to go to  the order number stored in register r ;  
if k is 8, and if the number is not 1, this order tells the ma- 
chine to go to the next order numerically. 

I f  k is 9. the machine stops. 

Some of the register numbers that may follow the 
kind-of-order 7c = 0 are 70, 71, 72, 73, 74, 75. These 
registers contain signals that set the computer f o r  6 
operations, respectively : 

70,transfer, c. = a 
71,addition, c = n + b  
72,subtraction, c = a - b 
73,multiplication, c = a . b 
74, ciir ision. c = a ~ b  
75,inequality, c = T ( a# b )  

I n  the last operation, the expression T(. . .) means 
"the truth value of . . ." and is equal to 1if . . . is 
true, and 0 if . . . is false. 

The program for  square root using ZAC is shown 
in Table 1. 

The first subroutine consists of orders 10, 11,12. 
Here we read out from the input tape into registers 
of the machine. Then we proceed to order 19. 

Subroutine No. 2 is now carried out. I n  orders 
19-29, we cover the division, the addition, and the mul- 
tiplication required by the iterative formula. Then 
we go to order 32. 

I n  subroutine No. 3, in orders 32-35, we cover in- 
equality; we test 2 successive approximations to see 
if they are equal or unequal. I f  they are  unequal, 
we record a 1in register 69. ( I n  practice, a differ- 
ence less than a certain tolerance would be accepted 
as equality.) 

Now we come to a choice of program. Using order 
36, we go to order 38 if, and only if, there is a 1i n  
register 69; in  other words, if x, and x,,, are unequal. 
I f  there is a 0 in  register 69-in other words, if the 
last two x's are equal-then we go to the next order, 
37, and that routes us to order 43. 

I n  orders 3 8 4 0 ,  we remove x, from the iterative 
formula, subroutine No. 2, and insert x,,, instead. 
Then with order 41  we go to subroutine 2, which will 
now compute the next approximation. 

I n  order 43 we read out the final value of x into the 
output tape, and with the next order stop the machine. 

Thus we see how we can program square root with 
a machine. 

I n  this program, we have to recognize the operation 
of inequality: this is logic rather than mathematics. 
We have to recognize different subroutines: this is 
logic rather than mathematics. We have to provide 
f o r  the branching of instructions : this is logic rather 
than mathematics. W e  have to provide for  the ma- 
chine's deciding for  itself when i t  will stop using a 
formula and, instead, give out the answer: this, too, is 
logic rather than mathematics. 

These several examples illustrate some of the rela- 
tions between symbolic logic and automatic computers. 
We can anticipate that there will be more and more 



fusion between numerical mathematics, on the one lrlachines where eluphasis is or1 logical competence 
hand, and nonnumerical reasoning, or symbolic logic, rather than on mathematical competence, are already 
on the other. Machines that play games, machines that in existence. Symbolic logic, large-scale calculating 
separate true combinations of statements from false machinery, and mathematics will continue to enrich 
combinations, other kinds of information-handling one another in many significant ways. 

The Traveling-Wave Linear Accelerator 
E. R. Wiblin 


Atomic Energy Research Establishment, Harwell, England 


TH E  STUDY O F  NUCLEAR PROCESSES 
commonly involves the bombardment of one 
nucleus with one or another of the funda- 
mental particles. I n  many experiments, par-  

ticularly early ones, the bombarding particles were 
those emitted by naturally radioactive substances, 
whereas in  later work artificially accelerated particles 
have been extensively used. I n  experiments involving 
neutrons as the bombarding agent, production is nor- 
mally a secondary process following the bombardment 
of a primary target either by a charged particle or 
by gamma radiation. 

Familiar particle accelerators are direct current gen- 
erators of, fo r  example, the Cockcroft and Walton 
type, and cyclic accelerating devices typified by the 
cyclotron and betatron. I n  the former, particles are  
accelerated by passing through a single large-voltage 
gradient, whereas in  the latter, energy is imparted to  
the accelerated particles by causing them to traverse 
a short intense gradient many times when constrained 
into a n  approximately circular path by a very strong 
magnetic field. F o r  this purpose a large and expen- 
sive electromagnet is required. 

Among the many electrical devices that have been 
made practicable by the great advances in  radio tech- 
nique of recent years is a new form of high-energy 
particle accelerator known as the Traveling-Wave 
Linear Accelerator. This machine has been fully 
described elsewhere, but a brief description of its 
mode of operation is, perhaps, not out of place here. 

Electrons are introduced axially into a special form 
of evacuated radio wave guide, along which electric 
waves are  made to travel so that their phase velocity 
increases steadily from a speed equal to  that of the 
entering electrons u p  to nearly that of light. Most of 
the electrons are then constrained into "bunches" mov-
ing in constant phase relationship to the waves and 
are, therefore, accelerated with them. 

I n  the accelerator recently installed a t  the Atomic 
Energy Research Establishment a t  Harwell in south- 
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ern England, the final electron energy obtained may 
be as  high as 3.2 mev with a mean current of about 
120 pa. The electrons may be extracted from the 
machine by allowing them to emerge through a thin 
metal win do^'^ a t  the end of the accelerating wave 
guide. 

Use of magnetron valve. The radio waves are gen- 
erated in a magnetron valve, such as was developed for  
radar use, a t  a wavelength of 10 cm. They occur in  
very intense pulses, 2 ps in  length, and up  to 500 
pulses every second may be used. The current of 
electrons during the pulse is, therefore, of the order 
of 120 ma. I f  the large current of electrons from the 
machine is allowed to strike a heavy metal target, in- 
tense bursts of gamma rays are  produced, and one use 
of the machine is to provide heavy doses fo r  irradia- 
tion purposes. 

This particular machine is, however, installed pri- 
marily as a neutron source. The gamma rays are 
converted into neutrons by photodisintegration in a 
target of heavy water. Some of the nuclei of the 
deuterium in the heavy water disintegrate and emit 
a neutron. Some of the neutrons emerge from the 
target and are available for  experimental purposes. 
The machine will be used as a neutron source f o r  time- 
of-flight measurements and, it  is hoped, will prove a 
better source than has hitherto been available. 

The linear accelerator is inherently suitable fo r  this 
use since the neutrons are  produced in bursts-corre- 
sponding to the pulses of radar waves from the mag- 
netron. By a technique similar to that used for  range 
determination in some radar  equipment, i t  is possible 
to measure the time-which may vary in practical 
cases from a few microseconds to a few milliseconds- 
taken by neutrons to travel over a fixed distance from 
their origin in the source, to a detector (usually a 
proportional counter). 

Calculating neutron velocity. A series of electronic 
"gates," opened in succession, allows only neutrons of 
velocities corresponding to the delay between the 
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