month: Provided, That there shall be no Leap Day in the last year of any century that is not divisible by four.

A condensed statement of the facts relating to this calendar is as follows: The year consists of New Year's Day, which is the first day of the year, and is not a part of any week or month; and thirteen months of twenty-eight days each, as follows: January, February, March, April, May, June, Sol, July, August, September, October, November and December.

In centennial years divisible by 400 and in other years divisible by 4, an extra day, called Leap Day, is inserted between the months of June and Sol. Leap Day is not a part of any week or month. The first quarter of the year ends with the first week of April, the second quarter with the second week of Sol, the third with the third week of September, and the fourth with the fourth week of December. New Year's Day and Leap Day are holidays, and are omitted in counting interest and rent.

It might be an improvement in this calendar to have the week begin with Sunday, as has always been the case. The suggestion has also been made to give the extra month the name of Midyear, though these are matters of detail.

It appears to the writer that this calendar is more desirable than the one outlined by Professor Warren in the April 19 number of SCIENCE. I hope those who are interested in the matter will communicate with Congressman Smith and encourage him to push his laudable efforts in the matter.

W. J. SPILLMAN

DRAWINGS ON LANTERN SLIDES

To the Editor of Science: In connection with the letter from Professor Gunthorp in your issue of April 12 in regard to drawings on lantern slides, I may mention that I have obtained satisfactory results with the use of ordinary India ink such as is used by draftsmen. This takes hold quite well on ordinary clean glass surface, I suppose through the action of the gum arabic contained in the ink. The slide can be attached to a drawing board by thumb tacks whose heads project over the glass, provided bits of rubber are placed be-

tween the glass and the heads of the tacks. For drawing circles with a compass a small bit of paper was gummed to the glass at the center, to enable the foot of the compass to take hold without slipping (the paper being afterward scraped off).

J. R. BENTON

SCIENTIFIC BOOKS

Culture and Ethnology. By ROBERT H. LOWIE, Ph.D., Associate Curator of Anthropology, American Museum of Natural History. New York, Douglas C. McMurtie. 1917.

Anthropologists in America need to issue more volumes for laymen than they have so far done. Dr. Lowie's present volume, and Dr. Wissler's larger volume on The American Indian, are especially welcome studies in this sparsely cultivated field.

Dr. Lowie says in his preface that his book is an attempt at popularization. Its aim is to occupy an intermediate position between technical discourses addressed to scientists and the more popular lectures which are designed to furnish mainly entertainment. In the first four chapters Dr. Lowie seems to me admirably to have attained his purpose.

The book starts with Tylor's well-known and practically perfect definition of culture: "Culture... is that complex whole which includes knowledge, belief, art, morals, law, custom and any other capabilities and habits acquired by man as a member of society." The point is well made and forcibly driven home that since the science of psychology, even in its most modern and varied ramifications, "does not grapple with acquired mental traits nor with the influence of society on individual thought, feeling and will, there is need of a science which deals with all acquired capabilities and habits of man as a member of society." That science, as Dr. Lowie names it, is Ethnology.

In the discussion of "Culture and Race" the author grants that "at first blush" it appears very plausible that within the human species "differences in organization should be correlated with the observed cultural manifestations of varying degree and complexity." And he concludes that though we "assume that racial